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CHAPTER 1: BACKGROUND AND SIGNIFICANCE 

Nutrition and Health 

The importance of nutrition and health has been a fundamental component of medicine since the 

time of Greek physician Hippocrates in 4
th

 century B.C. who advised taking ‘functional foods’; 

using nutrition as medicine.  Traditional Chinese medicine dating back more than 2000 years 

utilizes animal and plant based minerals and herbs to promote good health and prevent disease.  

Practitioners used empirical evidence and knowledge to treat ailments and disease through 

changing ones diet and lifestyle. 

 In today’s era of medicine disease phenotypes include complex, multi-factorial 

syndromes including cardiovascular disease, diabetes, obesity, and cancer.  The increasing 

incidence of these conditions and the observation of their occurrence in developed countries 

where a highly processed diet and sedentary lifestyle predominate, leads one to accept that these 

environmental changes are intimately associated with onset of these diseases.  Since food is 

something we take in routinely over the course of our lifetime, it becomes the most important 

environmental impact to human health.  Food components interact with tissues, cells, micro- and 

macromolecules within our body resulting in various biochemical reactions.  This understanding 

of the link between nutrition and health is continually explored in modern medicine using 

powerful molecular approaches to decipher nutrient interactions. 

 Current research in the field of health and disease focuses on promoting health, disease 

prevention, and determining molecular patterns in response to changes in the diet. Nutrigenomics 

is the study of how genes and gene products interact with dietary components to alter disease 

phenotype and how genetic variations effect how dietary components are metabolized.  This 

looks at how individual differences in the genome can impact susceptibility to diet.  Establishing 

individual dietary requirements is used currently to modify disease risk.  Focus on dietary 
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intervention to reduce the risk of cardiovascular disease in the U.S. has included implementation 

of the DASH diet (Dietary Approaches to Stop Hypertension) which recommends higher intake 

of fruits and vegetables and reducing intake of saturated fat to lower LDL cholesterol [1].   

Prospective studies evaluating dietary patterns to reduce the risk of type II diabetes as well as 

progression of the disease found that high intake of fruits and vegetables, whole grains, fish and 

poultry with decreased consumption of processed foods, sugar-sweetened beverages and red 

meat were found to lower disease risk and complications [2, 3]. 

 Bioactive or functional foods are defined as having positive effects on functions in the 

body, improving the state of health and/or reducing disease risk [4].  Powerful molecular 

approaches can determine nutrient activities at a molecular level and provide information on 

nutritional bioefficacy.  Genome wide association studies (GWAS) have located genes associated 

with many diseases.  Many studies have investigated the changes in gene expression in response 

to various nutrient profiles giving insight into the complexity of gene-nutrient interaction.  

However, genetics alone cannot explain the various phenotypes observed in the chronic diseases 

such as cancer.  Adding to the complexity is the contribution of epigenetic changes, the extra-

genetic alterations such as DNA methylation, histone modifications, and non-coding RNA 

functions that alter gene expression without changing the DNA sequence [5], [6], [7].  Emerging 

data show a direct influence of dietary factors and micronutrients on gene expression, DNA 

methylation, and chromatin remodeling [8].   

 The study of proteomics in conjunction with nutrigenomics assesses how the genome is 

expressed in response to diet [9].  The identification and quantification of bioactive proteins is 

fundamental to determine action of nutrients on molecular mechanisms.  Integrating data from 

these sources; genetic, epigenetic, and proteomic, allows a systems biology approach to 
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nutritional intervention.  This information can potentially create valid personalized medicine 

where risk of disease is calculated based on genetic profiles, environmental factors and other 

variables and tailoring treatment based on this information [10]. 

 At the forefront of research involving diet impact and disease is that of nutrient 

interaction with cancer.  Due to a large aging population and increasing exposure to various 

environmental insults, the incidence of cancer is projected to increase in most developed 

countries.  The World Cancer Research Fund and American Institute of Cancer Research 

evaluation of the available epidemiological evidence on food, nutrition and physical activity 

clearly support the suggestion that cancer incidence and mortality are potentially preventable by 

modification of the diet and incorporating physical activity into one’s lifestyle (WCRF/AICR 

2007).  Epidemiological evidence and supporting in vivo animal studies have implicated 

bioactive food components in altering pathways in cancer including apoptosis, cell cycle control, 

differentiation, inflammation and angiogenesis [11].  There is currently increasing interest of 

how nutrients modify gene interaction depending on individual genetic variation, such as single 

nucleotide polymorphisms or SNPs, and how this influences disease risk and prognosis.  

Functional SNPs can be found in gene promoter regions potentially altering gene expression 

profiles and subsequently effecting protein abundance in response to bioactive food components.   

 Epigenetic changes, which alter gene expression without a change in DNA sequence, are 

also mechanisms of nutrient regulation.  Studies demonstrate intake of a methyl-deficient diet 

leads to methylation profiles consistent with neoplastic transformation [12].  The ability to 

characterize DNA methylation profiles or histone modifications will impact the ability to 

determine how diet impacts the differential epigenetic effects in normal versus cancer cells [13].  

The overall impact of genetic and epigenetic changes can be monitored by looking at 
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transcription status, or transcriptomics in response to dietary factors.  Genome-wide analysis and 

microarray technologies can gather a large amount of data and be applied to the biological 

system as a whole or to targeted cellular processes. 

Folate and Cancer 

Folate, a water soluble B vitamin, has been studied extensively in relation to cancer, due 

to its crucial role in DNA synthesis and repair.  Folate deficiency has been linked to several 

visceral cancers showing an inverse relationship between higher consumption of foods 

containing folate and reduced relative risk of cancer.  Epidemiological studies assess folate status 

either by food frequency questionnaires where total folate intake is from food and supplements, 

or folate status can be measured by circulating biomarkers such as plasma folate.  When looking 

at breast cancer risk with folate status, a number of studies have suggested and inverse 

correlation, however these analyses are complex [14].  The Nurses Health Study determined that 

women taking folic acid-containing multivitamins for 15 years or more had a 75% risk reduction 

in developing colorectal cancer [15]. 

 The exact mechanism of how folate deficiency mediates onset and progression of cancer 

remains to be determined.  The role of folate in one-carbon metabolism provides clues into the 

potential pathways that could initiate genomic instability and epigenetic alterations.  Reduced 

dietary folate reduces the substrates available for one-carbon transfer reactions.  Within this 

pathway, folic acid is converted to tetrahydrofolate metabolites to be used in one-carbon transfer 

reactions.  In nucleotide synthesis 5,10-methyltetrahydrofolate is the methyl donor for the non-

reversible methylation of dUMP to dTMP.  5,10-methyleneTHF can also enter de novo purine 

biosynthesis by addition of a formyl group [16].  In this respect folic acid and its conversion to 

5,10-methylTHF is critical in maintaining the nucleotide pool for DNA synthesis and repair.   
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To maintain proper methylation, folic acid provides the substrate for remethylation of 

homocysteine to methionine ensuring adequate SAM levels for methylation in most biological 

reactions. In the methionine cycle, 5-methylTHF transfers one methyl group to homocysteine to 

synthesize methionine, activating S-adenosyl methionine (SAM) required for methylation of 

CpG sites found in gene promoter regions.  The effect of folate status on DNA methylation has 

been studied extensively as one mechanism of carcinogenesis.  Epigenetic regulation of gene 

expression is the other half of the story in terms of genome alterations involved in cancer 

initiation and progression.  Global hypomethylation of onco-genes and site-specific 

hypermethylation of gene promoters are common features in tumorigenesis [17].  

Hypomethylation can occur globally, where the entire genome is affected, or regional 

hypomethylation within the CpG sites of gene promoter regions.  Both forms of hypomethylation 

are thought to induce oncogene activation, whereas regional hypermethylation of gene promoter 

regions is associated with transcriptional silencing of tumor suppressor genes [18].  The impact 

of folate deficiency on methylation status is observed in rodent models where prolonged folate 

deficiency resulted in global DNA hypomethylation in liver [19], [20].  In human studies, global 

DNA hypomethylation was seen in women made folate deficient [21], [22] and increases in 

homocysteine levels, an indication of reduced methionine conversion, are routinely observed in 

individuals with low folate status.  In glioma patients, low methylation status confers poor 

prognosis due to activation of certain oncogenes and poor response to treatment with the 

alkylating agent TMZ due to increased activity of the MGMT enzyme.  Folate supplementation 

was demonstrated to increase DNA methylation and improve sensitivity to TMZ [23].  The 

modification of DNA methylation is one of the major mechanisms studied in tumorigenesis. 
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 Folate is involved in the production of thymidine through conversion of dUMP to dTMP 

by thymidylate synthase and production of purines by addition of a formyl group to 5,10 

methylene THF.  Since these DNA precursors are critical to repair of DNA, reduced folate can 

compromise DNA repair fidelity.  Reduced conversion of dUMP to dTMP results in increased 

uracil misincorporation and accumulation of uracil in DNA.  Uracil misincorporation is repaired 

by the base excision repair pathway (BER) involving a series of coordinated enzymatic steps to 

repair small, non-helix distorting lesions.  The attempt to repair the misincorporated uracil by 

glycosylase removal in conditions of limited folate sets the stage for futile repair resulting in 

strand breaks, chromosomal aberrations and malignant transformation [24], [25].  Folate status is 

associated with uracil misincorporation, strand breaks and genomic instability in humans.  In 

folate deficient individuals, uracil levels and micronuclei frequency are increased eight and three 

fold respectively [25].  

Folate Deficiency and Base Excision Repair 

The condition of folate deficiency has been shown to compromise base excision repair in 

both in vitro and in vivo studies [26], [27], [28], [29].  BER is a critical repair pathway 

responsible for repair of most endogenous base lesions, abasic sites, and single-strand breaks 

[30], [31] including most lesions generated by reactive oxygen species (ROS) and lesions 

generated by environmental agents and their metabolic intermediates [32].  The initial step in 

BER is recognition of the damaged base by a specific glycosylase, which cleaves the N-glycosyl 

bond between the sugar and the base forming an abasic site.  There are about 10 known human 

glycosylases with overlapping substrate specificities [33] able to recognize more than one type of 

DNA damage.  The monofunctional glycosylases possess only glycosylase activity and require 

an additional enzyme- an AP-endonuclease (APE1) for the incision of the sugar residue leaving 
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behind a 5’dRP [34].  The bifunctional glycosylases possess both glycosylase and AP lyase 

activity, and can excise the base and create a 3’ incision upstream of the AP site.  APE1has the 

ability to remove 3’ obstructive groups, allowing β-pol to polymerase to replace the excised 

nucleotide and remove the 5’dRP moiety followed by ligation of the repaired fragment by LIG-3 

in the short-patch pathway.  Additional proteins are involved in the repair process including 

XRCC1, a platform protein, which recruits and coordinates proteins in the BER process [35] and 

PARP1 which binds to SSBs preventing degradation while recruiting the BER protein complex 

[36], [37].  The rate-limiting step in the BER pathway is performed by β-pol which possesses 

nucleotidyl transferase activity and dRP lyase activity [38], [39].  The dRP-lyase activity is 

critical, as persistence of dRP groups proves lethal in cells engineered with β-pol lacking the 

8kDa dRPase domain [40].  β-pol null cells are hypersensitive to the alkylating agent MMS due 

to failure to remove the cytotoxic 5’-dRP group induced by initiation of the repair pathway.  

Since no other proteins can efficiently remove the 5’-dRP group, it’s removal is the rate-limiting 

step during BER [41].   

An important study done in our lab demonstrated imbalanced BER in folate deficient 

(FD) mice, where UDG expression and activity were induced in response to increased uracil 

misincorporation however, β-pol failed to be upregulated in the FD condition resulting in failure 

to complete repair and accumulation of toxic repair intermediates [42]. Work done in Balb/c 

mice, a strain shown to induce colorectal cancers with FD alone, shows increased dUTP:dTTP 

ratios, double-strand breaks [43]and decreased apoptosis as possible mechanisms of higher 

susceptibility to colon tumors when these animals are made folate deficient [44].   

In line with FD and colorectal cancer is evidence supporting an inverse correlation 

between dietary folate intake and relative risk of colon cancer.  These studies suggest a 20-40% 



www.manaraa.com

8 

 

reduction in the risk of colorectal cancer or adenomas in subjects with the highest folate status 

compared to those with low folate status [45], [46].  Recently, however, evidence has emerged 

providing conflicting views on folic acid protection in colorectal carcinogenesis.  A population 

study from Sweden reported high plasma folate concentrations are associated with increased risk 

of colorectal cancer [47] and the Aspirin/Folate Polyp Prevention study reported that folic acid 

supplementation at 1mg/day for 6 years significantly increased the recurrence of advanced 

colorectal adenomas by 67% in subjects with history of colorectal adenomas [48].  This paradox 

between folic acid’s effect in carcinogenesis stems from its role in providing precursors for DNA 

synthesis and repair.  Depending on the timing of folate intervention in the carcinogenesis 

process, initiated cancer cells can utilize accelerated DNA synthesis to promote growth and drive 

oncogenic progression.  Mutations in Ras genes, found in 30% of all cancers, are frequently 

found in lung cancer adenocarcinoma in association with upregulated DHFR and TS [49] for 

DNA synthesis, giving rise to the concept of folate scavenging to drive cell growth and 

proliferation in cancer cells.   

The concern that folate is demonstrating dual effects on cancer initiation and progression 

is of utmost importance especially in the U.S where mandatory folate fortification was 

introduced in 1998 proving a daily average intake of 100-200ug folic acid [50, 51].  However the 

actual increased intake turned out to be higher than anticipated.  Analysis of cancer statistics 

suggest that the mandatory fortification has resulted in an increased risk of colon cancer [52].  

Studies done to address this issue have shown that folate supplementation at 8 mg/kg in AOM-

treated rats promoted progression of ACF and crypts per focus in the colons of these animals 

[53].  In Apc
+/-

 Msh
-/- 

mice, which develop intestinal neoplasms spontaneously without 

carcinogen induction, demonstrated suppression of adenomas if folate supplementation was 
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given before onset of neoplasia but supplementation of folic acid after establishment of intestinal 

neoplastic foci caused tumor-promoting effects [54]. 

Our lab investigated the impact of folate deficiency on BER and carcinogenesis in mice 

treated with the chemical carcinogen 1,2-dimethylhydrazine (DMH).  In our study the animals 

were put on folate deficient (0mg/kg) or folate adequate (2mg/kg) diet before treatment with 

DMH.  After six weekly i.p. DMH injections, animals were maintained on the respective diet for 

an additional 6 weeks at which time the animals were sacrificed.  The colons were excised and 

examined for number of aberrant crypt foci (ACF), the earliest precursor of colorectal cancer 

observed in humans [55].  Both wild-type C57/Bl6 and β-pol haploinsufficient mice were used in 

this study to determine the impact of reduced BER capacity in these conditions.  Analysis of the 

number of ACF per mouse is shown in Fig 1.  FD or β-pol haploinsufficiency alone failed to 

induce ACF in these animals.  However, treatment with DMH induced ACF formation 

significantly in wild-type FD animals.  Surprisingly the knockout FD animals showed reduced 

number of ACF, about 50% less than the wild-type counterparts.   

When comparing the ACF progression in animals maintained on the FD diet 6 weeks 

after last DMH treatment to animals maintained on respective diet for 40 weeks after DMH 

treatment, the number of ACF is reduced in the FD animals (Fig 2A) however the number of 

crypts per focus is increased (Fig 2B) indicating advanced progression of neoplasm after 40 wks 

on a folate deficient diet in the wild-type animals.  Colons stained with methylene blue display 

observed ACF and mucosa alterations as described above (Fig 2A).  Pathological analysis of 

liver in wild-type and β-pol
+/-

 mice maintained on respective diet for 40 weeks after final DMH 

treatment show visible tumor at time of sacrifice (Fig 3).  Visible tumors were observed grossly 

in 50% of the FD WT DMH treated animals, where no tumor was observed in the FA wild-type 
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treated animals.  All of the FA β-pol
+/-

 DMH-treated animals showed visible tumor and 

confirmed by H&E staining, where the FD knockout counterparts showed no tumor at 40 weeks 

post-DMH treatment.  In the knockout animals, where β-pol mRNA expression is 50% reduced 

compared to wild-type and protein is several fold less (data not shown), FD appears to be 

conferring protection as indicated by reduced colon ACF formation and lack of tumor burden in 

liver at 40 weeks post-treatment.   

 Further investigation into gene expression in response to FD and DMH-treatment in the 

wild-type and knockout animals was done by microarray analysis of mucosal mRNA.  Initial 

look at differentially expressed genes via scatter plot demonstrated extensive differential 

expression in the FD β-pol
+/-

 DMH-treated animals compared to the wild-type counterparts (data 

not shown).  Hierarchal clustering of the microarray expression data was performed using the 

DAVID biological function database to group data based on biological pathway.  The heat maps 

generated were based on intensity of gene expression from the raw data, using colors to identify 

those genes upregulated in red or down-regulated, in blue.  Neutral or no change in gene 

expression is indicated by yellow.  As shown in Fig 4, genes in the pro-apoptotic pathway were 

upregulated in the FD β-pol
+/-

 animals and down-regulated in the FD wild-type.  Expression of 

DNA repair genes were down-regulated in the FD β-pol
+/-

 animals, while the opposite was 

observed in the FD wild-type animals showing upregulated expression of DNA repair genes in 

these animals.  To confirm the finding of increased apoptotic signaling in the FD β-pol
+/-

 treated 

animals, pathological analysis using the TUNEL assay was performed on the colons of wild-type 

and knockout animals treated with DMH.  As shown in Fig 5 the number of positively stained 

apoptotic cells per crypt was significantly higher in the FD β-pol
+/-

 condition compared to the FD 

wild-type.  This data is consistent with the ACF data indicating increased apoptosis eliminates 
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cells with excessive DNA damage from progressing to malignant transformation.  Proliferation 

indices were measured by Brdu staining of the colons of the DMH-treated knockout animals (Fig 

6).   

This data demonstrates diminished proliferation in the FD β-pol
+/-

 condition providing 

further evidence of FD inducing mechanisms to prevent propagation of an initiated cell 

population into oncogenic progression.  In this way, the excessive DNA damage incurred in 

response to FD and DMH with inherent loss of β-pol induces apoptosis and inhibits DNA repair 

mechanisms to prevent erroneous repair and genomic instability leading to tumorigenesis. 

Defective DNA repair is associated with many human hereditary diseases including NER 

(Xeroderma pigmentosum, Cockayne syndrome), DNA strand break repair (Ataxia 

telangectasia), mismatch repair (hereditary non-polyposis colon cancer) [34].  While there is no 

disease phenotype linked to BER deficiency, cancer susceptibility is accelerated when DNA 

repair is defective.  Since it has been demonstrated that folate has the ability to modulate DNA 

repair within the base excision repair pathway and shown to impact tumorigenesis in our study in 

mice, it is imperative to determine the level of this regulation and elucidate the mechanisms of 

folate’s role in DNA repair.   

In this study, I first investigate the impact of folate deficiency on DNA methylation 

alterations in the promoter regions of key genes in the BER pathway.  I then look at DNA repair 

mechanisms in response to folate deficiency and exposure to carcinogen and how the mechanism 

of damage and repair progresses after long-term carcinogen exposure.  This data reveals loss of 

DNA repair capabilities under folate deficiency with loss of apoptosis signaling potentially 

giving rise to clonogenic selection of cells with a mutator phenotype.    
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Figure 1  ACF formation in colon of β-pol
+/-

 mice consuming a folate deficient diet. WT and β-

pol
+/-

  received either a FA diet or FD diet and subjected to either no treatment (control) or i.p. 

treatment with DMH for 6 weeks at 30 mg/kg body weight (DMH treated).  After sacrifice 

colons were processed in 10% neutral buffered formalin and stained with methylene blue.  

Colons were analyzed under light microscopy to visualize the number of ACF per mouse colon 

(ACF/mouse).  Bars with different letters indicate significant differences at P < 0.05. 
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Figure 2  Impact of long term feeding on ACF formation and Crypts Multiplicity.  Comparison 

of ACF formation and crypt multiplicity in mice fed either a FA or FD diet at 6 weeks versus 40 

weeks post DMH treatment.  Panel A: (I)  Normal colonic crypts, (II)  ACF formation in FD 

environment 6 weeks post DMH, (III) ACF formation in mice fed FA diet 40 weeks post DMH, 

and (IV) number of ACF of mice fed a FD diet 40 weeks post DMH treatment. Arrows depict 

area of aberrant crypt formation.  Panel B:  Relative number of ACF/mouse in mice fed either a 

FA or FD diet 6 weeks or 40 weeks post DMH treatment, respectively.  Panel C:  Number of 

aberrant crypts per focus in mice fed either a FA or FD diet 6 weeks or 40 weeks post DMH 

treatment, respectively.  Bars with different letters indicate significant differences at P < 0.05. 
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Figure 3  Impact of β-pol
+/-

 and folate deficiency on induction of tumors in livers of DMH-

treated mice.  The mice were sacrificed 40 weeks after last treatment of DMH and examined 

grossly.  H&E micrographs showing tumor formation in liver sections from (I) WT FA, (II) WT 

FD, (III) FA β-pol
+/-

 and (IV) FD β-pol
+/-

 mice treated with DMH.  The % value represents the 

percent of mice with visible liver tumor formation.  All wild-type animals fed the FD diet 

showed liver tumors through H&E analysis. 
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Figure 4  Heat map representation of microarray data for pro-apoptotic and DNA repair 

differentially expressed genes. Hierarchal Clustering analysis was performed using 

GeneSpringGX V10 (Agilent Technologies) software, and the parameters were set for centroid 

linkage which calculates the euclidean distance between the respective centroids of two clusters. 

A heat map in quadruple (A, B, C, and D) for each condition representing pro-apoptotic and 

DNA repair genes are shown.   
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Figure 5  Impact of β-pol
+/-

 and folate deficiency on apoptotic activity and proliferation indices 

in colonocytes.  A. Representative photomicrographs showing TUNEL-positive staining in cells 

(brown) of colonic mucosa.  (I) WT FA, (II) WT FD, (III) FA β-pol
+/-

 and (IV) FD β-pol
+/-

 mice 

treated with DMH.  B. Tally of the TUNEL-positive apoptotic cells.  WT and β-pol
+/-

 were fed 

either a FA or FD diet and subjected to DMH treatment.  Colons were excised after sacrifice and 

fixed in 10% neutral buffered formalin, paraffin embedded and sections stained for TUNEL 

positive and percent apoptotic cells were calculated as described in methods.  Means without a 

common letter differ, P < 0.01.  C.  Representative photomicrographs showing H&E of colonic 

mucosa.  (I) FA β-pol
+/-

 and (II) FD β-pol
+/-

 mice treated with DMH.  Representative 

micrographs showing BrdU staining (brown) of colonic mucosa.  (III) FA β-pol
+/-

 and (IV) FD 

β-pol
+/-

 mice treated with DMH.  Proliferation Analysis: -pol haploinsufficient mice were 

treated as described in materials and methods.  Briefly, 2 hours prior to sacrifice mice were 

injected i.p. with BrdU (2.16mg/kg body weight).  Colon segments were fixed in 10% formalin 

and embedded in paraffin.  BrdU incorporation was detected by immunostaining as described in 

materials and methods.  D. Enumeration of positive proliferation expressed as number of positive 

cells per crypt. * indicate differences at P<0.01.   
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CHAPTER 2: FOLATE DEFICIENCY AND REGULATION OF PROMOTER REGION 

METHYLATION IN BER GENES 

Introduction 

Folic acid has been implicated to play a significant role in the pathogenesis of today’s 

multi-factorial diseases including cardiovascular disease, neurodegenerative disorders and cancer 

[56-58].  The association between folic acid intake and cancer has been demonstrated in 

epidemiological studies showing diets high in fruits and vegetables relate to a decreased risk of 

cancer.  Folates, water-soluble B vitamins, are found in high concentrations in green, leafy 

vegetables and are critical for one-carbon cellular metabolism.  In the majority of human studies, 

data indicates that individuals who consume the largest amounts of folate-containing foods have 

a reduced relative risk of developing colon polyps or cancer [45, 46, 59].   

 Folate deficiency (FD) is associated with the development of several epithelial cancers 

including cancer of the lung, cervix, breast, brain, colon and liver with strongest association in 

colon [56].  Folate deficiency has been shown to increase DNA damage [26, 60] and 

chromosomal aberrations [25, 61] resulting in carcinogenic transformation.  The mechanism by 

which FD increases the incidence of cancer is not completely understood.  Several proposed 

mechanisms include the pathways by which folate functions in cellular one-carbon transfers to 

maintain DNA stability.  Dietary folates play a critical role in maintaining DNA stability through 

providing sufficient nucleotide synthesis allowing high DNA replication fidelity and upholding 

epigenetic control throughout the genome.  Intracellularly, folic acid is converted to 

tetrahydrofolate metabolites to be used in one-carbon transfer reactions.  In nucleotide synthesis 

5,10-methyltetrahydrofolate is the methyl donor for the non-reversible methylation of dUMP to 

dTMP.  5,10-methyleneTHF can also enter de novo purine biosynthesis by addition of a formyl 
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group [16].  In this respect folic acid and its conversion to 5,10-methylTHF is critical in 

maintaining the nucleotide pool for DNA synthesis and repair.  To maintain proper methylation, 

folic acid provides the substrate for remethylation of homocysteine to methionine ensuring 

adequate SAM levels for methylation in most biological reactions. In the methionine cycle, 5-

methylTHF transfers one methyl group to homocysteine to synthesize methionine, activating S-

adenosyl methionine (SAM) required for methylation of DNA (Fig 6).   

Folate deficiency by reduced folic acid intake establishes an environment conducive to 

loss of DNA integrity and epigenetic dysregulation.  Limited folate causes reduced thymidine 

synthesis increasing the dUTP/dTTP pools [43] and increasing uracil misincorporation into DNA 

[62].  The resulting U:A mispairs are potentially mutagenic causing futile repair and strand 

breaks.  Also, decreased synthesis of the purines, adenosine and guanosine inhibit normal DNA 

repair. Disruption of remethylation of homocysteine and transsulfuration pathway during folate 

deficiency can also result in accumulation of homocysteine leading to increased induction of 

oxidative stress and further compromise biological methylation reactions. Reduced folate status 

also plays a role in epigenetics, altering methylation status of the genome and consequently 

altering gene expression. Changes in methylation patterns have been observed in many types of 

cancer and include global hypomethylation which can potentially activate oncogenes as well as 

regional hypermethylation resulting in silencing of tumor- suppressor genes and DNA repair 

genes [17].  The hypomethylation of repeat sequences and non-coding DNA increases genomic 

instability by promoting chromosomal rearrangements [63].  These epigenetic alterations are 

preneoplastic, occurring early in the carcinogenic process and can set the stage for neoplasia 

[64].   
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The BER pathway is a damage-inducible pathway that repairs small non-helix distorting 

lesions such as uracil misincorporation, oxidative damages such as 8-oxoGuanine, and single-

strand breaks.  It is estimated that the BER pathway is responsible for repair of as many as one 

million nucleotides per cell per day [65] rendering functional BER and complete resolution of 

repair  imperative for maintaining genomic stability.  As shown by our lab and others, FD 

compromises the BER pathway by initiating repair without complete resolution of the damage 

resulting in accumulation of toxic repair intermediates such as single-strand breaks [42].  

Unresolved repair intermediates can lead to double strand breaks, chromosomal aberrations and 

overall loss of genome integrity. Based on our findings of reduced BER capacity in the FD 

condition and determining that dysregulation of repair coordination occurs at the level of β 

polymerase, we wanted to investigate the mechanism of β-pol expression. Therefore, the 

objective of this study was to determine the level of gene expression of key enzymes in the BER 

pathway and establish if the mechanism of gene regulation is due to epigenetic factors, i.e. 

methylation of promoter regions. 

Materials and Methods 

Animals 

Experiments were performed in young (3-4 months of age), wild-type C57Bl/6 specific pathogen 

free mice in accordance with National Institutes of Health (NIH) guidelines for the care and use 

of laboratory animals.   The animals were maintained in an SPF facility under 12 hour light/dark 

cycle with ad libitum access to food and water.  The animals were randomly assigned to two 

dietary groups and fed AIN93G-purified isoenergetic diets (Dyets, Inc., Lehigh Valley,
 
PA).  The 

control group received folate adequate diet containing 2mg/kg folic acid.  The experimental 

group received a folate deficient diet containing 0mg/kg folic acid. 1% succinyl sulfathiazole 
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was added to all diets and diets were stored at -20 deg C.  The diet regiment was maintained for 

eight weeks and animals’ food intake and body weight were monitored twice weekly for signs of 

toxicity.  The animals were anesthetized by CO2 and sacrificed by cervical dislocation.  Tissues 

harvested at time of sacrifice were flash frozen and stored in liquid nitrogen.  The animal 

protocol was approved by the Wayne State University Animal Investigation Committee.   

Folate Assay 

Serum folate levels were measured using the SimulTRAC-SNB radioassay
 
kit for vitamin 

B12 (
57

Co) and folate (
125

I) per the manufacturer's
 
protocol (ICN Diagnostics, Orangeburg, NY). 

Blood was collected
 
at time of sacrifice and allowed to clot at room temperature

 
for 60 min. 

Samples were centrifuged, and serum was collected
 
for immediate analysis of serum folate 

levels. Standards provided
 
in the kit were used to generate a standard curve for determination

 
of 

sample folate values. Radioactivity was measured by a -counter,
 
and values were calculated as 

described by the manufacturer
 
for both serum folate and serum B12. 

Isolation of Genomic DNA 

Gravity Tip Column Extraction of DNA—DNA for methylation analysis of the promoter was 

isolated using
 
Qiagen (Valencia, CA) gravity tip columns as described in the

 
manufacturer's 

protocol. DNA was isolated from Brain, Spleen & Liver from folate added & folate deficient 

control and 2NP treated mice. This method generates large fragments
 
of DNA (up to 150 kb) 

while minimizing shearing. 

Analysis of 8-OHdG levels- Genomic DNA was isolated with the NaI DNA extractor kit (Wako 

chemicals, Inc.,Richmond, VA) [66]. This technique, which uses NaI instead of phenol, 

minimizes DNA oxidation that occurs during DNA isolation [66, 67]. 30µg of DNA was 

hydrolyzed using nuclease P1 and calf alkaline phosphatase. The levels of both 8-OHdG and 
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2dG in the DNA hydrolysates were quantified using a HPLC-EC detection system with a polar 

mobile phase as described previously [68, 69]. The level of DNA oxidation is expressed as the 

ratio of 8-OHdG to 2dG. 

Detection of relative uracil levels- 4 ug DNA from liver was isolated as described [70] and 

blocked with methoxyamine for 2 hr at 37 deg C, treated with 0.2 units of UDG (New England 

Biolabs) for 15 minutes at 37 deg C.  DNA is then probed with 2mM biotinylated ARP (Dojindo 

Molecular Technologies, MD) for 15 minutes at 37 deg C.  DNA is then immobilized on 

nitrocellulose membrane, the membrane washed in 5X SCC and baked at 80 deg C for 30 

minutes then incubated with HRP-containing hybridization buffer for 45 minutes.  After 

washing, the membrane is incubated in ECL (Thermoscientific, Rockford, IL) for 5 minutes and 

then visualized and exposed using Bio-Rad ChemiImaging system.  The data are expressed as 

integrated density value (IDV) of the band per microgram of DNA loaded. 

Bisulphite treatment of DNA 

For the investigation of DNA methylation pattern of the promoter regions of -pol and Ung 

genes, bisulfite conversion method was used. Bisulfite reaction occurs between cytosine and 

sodium bisulfite, as a result unmethylated cytosine is deaminated to uracil while methylated 

cytosine remains unchanged. Genomic DNA normalized to 2 µg was used for the bisulfite 

treatment and the assay was performed as described by the manufacturer’s protocol (Zymo 

Research, Orange, CA). 

PCR Amplification of Bisulfite treated DNA 

PCR amplification of the bisulfite treated DNA was done as uracil is converted to thymidine 

during the amplification of the bisulfite DNA. Primers were designed for the CpG islands present 

in the upstream of the exon-1 of the -pol promoter. The methylated primers were designed for 
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the two separate fragments consisting of 146bp and 200bp (MethPrimer, San Francisco, CA).  

For Ung, methylated primers were designed for the 260 bp CpG rich region of the promoter PB.  

p53 gene has highly abundant CpG region between exon7 and exon8, thus p53 gene was used as 

a positive control and methylated primers were designed for bp region. PCR amplification for the 

CpG rich region of each gene was carried out using MethPrimer’s as described by the 

manufacturer’s protocol (Promega, Madison, WI).  

Subcloning of the methylated genes 

The amplified genes were subcloned in bacteria. After subcloning the amplified fragment was 

sequenced with greater reliability and only one allele is sequenced per clone. Briefly, the 

amplified gene was analyzed on agarose gel and purified using gel extraction kit (Qiagen, 

Valencia, CA).  Ligation of the purified DNA into pGEMT easy vector was done using 8ng 

purified DNA, pGEMT easy vector and T4 DNA ligase. (Promega Madison, WI). A ligation 

with the negative control having no insert DNA at 4°C overnight was done concurrently 

according to the manufacturers described protocol (Promega, Madison, WI)).  The ligated 

product was then transformed into JM109 E.coli Competent Cells and transformation was done 

according to manufacturers protocol (Promega Madison, WI)). Transformed cells were plated on 

LB agar plates containing 100μg/ml ampicillin and IPTG/X-gal and incubated overnight at 37°C. 

The pGEMT Easy Vector has Amp
r
 gene and lac-Z gene for the selection of the transformed 

plasmid DNA. The selective plates had blue and white colonies, white colonies indicating 

insertion of the plasmid DNA by disrupting the lacZ gene and blue colonies indicating lack of 

the DNA insert.  Thus, white colonies were selected for the plasmid isolation. 

Plasmid Isolation & Sequence Analysis 
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After the overnight incubation, five white colonies from each plate were picked and grown in LB 

broth with 100µg/ml of ampicillin at 37°C overnight in incubated shaker.  Plasmid DNA was 

isolated using Perfectprep Plasmid Mini kit (Eppendorf, Westbury, KY) and manufacturer’s 

protocol was followed.  The isolated plasmid DNA was then sequenced by M13 forward primer 

using ABI Prism 3700 sequencer (Applied biosystems, Foster City, CA).  Sequences were 

analyzed for the change in methylation pattern in CpG rich area of the promoter region of -pol 

and Ung genes in folate deficient and folate adequate animals. 

Gene expression Analysis 

The mRNA expression level of genes involved in BER pathway namely, Ung, Ogg1, APE1/Ref-

1, -pol, Xrrc1 and lig-1, were quantified using real-time PCR. Briefly, total RNA was extracted 

from liver, brain, colon and spleen tissue of folate added & folate deficient mice using RNeasy 

Kit (Qiagen, Valencia, CA). First strand cDNA was synthesized from 1 g RNA using 

ImprompII reverse transcriptase kit (Promega, Madison, WI) and purified using QIAquick PCR 

purification kit (Qiagen, Valencia, CA). The primer sequences used for the amplification are 

detailed in Table 1. External standards for all the genes were prepared by subcloning the 

amplicons into pGEM-T easy vector. The vectors were linearized using EcoR1 to make the 

standard curves. All BER gene transcripts were normalized to both GAPDH and RPLO. 

Results 

Analysis of DNA damage in response to folate deficiency 

Folate deficiency has been associated with genomic instability and as such, folate 

deficiency has been observed to increase somatic mutations and chromosomal aberrations. Uracil 

misincorporation into DNA and DNA strand breakage has been demonstrated in folate deficient 

animal models [60, 71, 72] and deficient folate status has also been associated with uracil 



www.manaraa.com

29 

 

misincorporation, increased micronuclei frequency and chromosomal instability in humans [25, 

73]. In order to study the mechanism behind folate deficiency induced damages, we used 

C57Bl/6 mice and put them on folate adequate and folate deficient diets for 8 weeks. The folate 

deficient animals showed ~90% reduced folate levels in their plasma after 8 weeks. Despite the 

reduction in folate levels these animals did not display any significant difference in their body 

weight. As a first series of experiments, we measured DNA base damages such as uracil and 8-

Oxo-dG levels in the liver genomic DNA. Folate metabolism plays a critical role in nucleotide 

synthesis as it provides one-carbon units for the conversion of dUMP to dTMP.  Folate 

deficiency limits thymidine synthesis while increasing dUMP/dTTP ratios [25].  Since dUTP is 

an excellent substrate for most replicative polymerases, uracil can be readily misincorporated 

into the DNA under conditions of limiting folate.  The resulting U:A mispairs are repaired by 

DNA repair enzymes leaving an abasic site that can persist if folate is continually limited.  As 

reported previously by our lab [70] folate deficiency resulted in significant increase in uracil 

levels in liver genomic DNA measured using the UDG-coupled ASB assay when compared to its 

folate adequate counterparts (Fig. 7A). 

   The highly mutagenic lesion , 8-oxo-dG is seen in significant quantities in human DNA 

and causes G:C to T:A transitions if left unrepaired [74].  This oxidative lesion is repaired via the 

base excision repair pathway.  Folate deficiency has been previously shown to induce oxidative 

stress by itself along with its other physiological and biochemical impacts through the generation 

of hydrogen peroxide [75].  Studies done on  lymphocytes from folate deficient rats [76] and 

brains of folate/methyl-deficient rats [77] show increased 8-oxo-dG levels. Therefore, we wanted 

to determine the 8-oxo-dG levels in the liver of our folate deficient mice. In line with these 

previous studies, we indeed see a significant increase in 8-oxo-dG lesions (Fig 7B).  Thereby, 
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increased levels of such DNA damages in the folate deficient condition suggest inability of BER 

to repair the lesions resulting in persistence and accumulation of the damaged bases. Therefore, 

to characterize the effect of folate deficiency on BER we wanted to determine the changes in 

expression of BER genes as a result of increased presence of these damages. 

Analysis of expression of genes in BER pathway in response to folate deficiency 

Oxidative stress induced damage is considered the most common insult affecting the 

genome [74] and repair of these damages is crucial to maintain the integrity of the genome [78].  

Base Excision repair pathway is a simple, dynamic, environmentally responsive DNA repair 

pathway [79-81].  It plays an important role in repairing oxidative damages, single strand breaks 

and other non-helix-distorting DNA damages [82-84]. The classic BER response to DNA base 

damages such as uracil and alkylated bases involves a monofunctional glycosylase removing the 

damaged base leaving behind an abasic site. Oxidative damages such as 8-oxo-dG and thymine 

Glycol require bifunctional glycosylases. An endonuclease, namely, APE1/Ref-1 which also 

possesses 3; phosphodiesterase, 3’ phosphatase and 3’-5’ exonuclease activity [41], subsequently 

creates a single strand break adjacent to the abasic site generating a 3’-OH end. The next enzyme 

in the pathway, -pol removes the dRP moiety left behind and generates a 5’ phosphate end. 

Further using 3’-OH as its substrate, the enzyme inserts a new nucleotide. The dRP lyase activity 

of -pol, serves as the rate-limiting step in this pathway [38]. Finally DNA ligase seals the nick 

completing the repair process. Damages to DNA caused by folate deficiency including uracil 

misincorporation and oxidative damages are repaired by the BER pathway.   Our lab has 

previously reported the attenuation of BER activity during folate deficiency [42]. Therefore to 

analyze the mechanism of this attenuation, we looked at expression patterns of the genes 

involved in the BER pathway using quantitative real time PCR. 
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Using real time PCR, we quantified the expression levels of some of the genes involved 

in the BER pathway in the liver of folate adequate and folate deficient mice. These genes showed 

differential expression during folate deficiency.  Uracil DNA glycosylase (Ung), a 

monofunctional glycosylase responsible for removing misincorporated uracil and oxidized 

cytosines from DNA show significant increase in mRNA expression suggestive of  increased 

glycosylase activity during folate deficiency (Fig 8A).  Whereas, OGG1, a bifunctional 

glycosylase involved in removal of 8-oxo-dG, did not show any significant difference during 

folate deficiency compared to the folate adequate condition (Fig 8B).  The next enzyme in the 

pathway, APE1/Ref-1 shows an increasing trend during folate deficiency (Fig 8C).  As such the 

pattern of expression of Ung and APE1/Ref-1 indicate coordinated repair and high efficiency to 

remove the damaged base and create single strand breaks. In line with our previous studies the 

rate limiting enzyme of the pathway, -pol, despite being a stress response gene did not show 

any upregulation during folate deficiency (Fig 8D).  This demonstrates the loss of damage 

inducibility of β-pol.  Finally, the next enzymes in the BER pathway, XRCC-1, a scaffolding 

protein that forms a complex with LIG-3 and stimulates its activity was observed to be 

downregulated during folate deficiency while, lig-3 did not change significantly (Fig 8E, F).  

This data clearly demonstrates differential regulation of BER genes during folate deficiency. 

Further, the expression pattern of Ung and B-pol was determined in other tissues such as, 

brain, spleen and colon. Ung, following the liver expression showed significant upregulation 

during folate deficiency in brain and colon (Fig.9). β-pol expression yet again followed the liver 

expression and showed no induction during folate deficiency in colon, spleen and brain with 

spleen in effect showing downregulation (Fig 10).  These findings confirm that BER pathway is 

initiated during folate deficiency but not completed there after possibly leaving behind 
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unresolved toxic intermediates. This further reinforces the finding that folate deficiency impacts 

the BER pathway at the level of β-pol.  Therefore, in order to determine if the mechanism of 

gene regulation of these two genes was due to epigenetic alterations, we next analyzed their 

promoter regions for methylation changes. 

Promoter analysis of UNG and B-polymerase for methylation of CpG regions 

DNA methylation is an epigenetic alteration that plays an important role in regulating 

gene expression and ultimately protein expression [85].  DNA methylation in mammals 

primarily occurs by the covalent modification of cytosine residues located in CpG dinucleotides 

[63].  And these CpG dinucleotides are concentrated in CpG islands that occur in approximately 

60% of gene promoters [86].  Thus site-specific methylation changes in gene promoter regions 

can control gene expression.  Global and gene-specific DNA hypomethylation and local regional 

hypermethylation are common features in tumorigenesis [17].  Epigenetic changes are one of the 

earliest and consistent observations in the carcinogenic process as demonstrated by extensive 

CpG island hypermethylation in benign colon polyps as well as advance high-grade tumors [87].  

BER pathway is a damage-inducible pathway and previous study from our lab demonstrates 

attenuation in this inducibility during folate deficiency [42]. This study further illustrates the 

differential effect of folate deficiency on the expression of BER genes. In order to study the 

mechanism of gene expression changes in response to folate deficiency we looked at methylation 

status of two genes which show differential expression, namely Ung and β-pol in different 

tissues.  Using bisulfite sequencing method, we determined the methylation profile of Ung and 

β-pol promoter regions. The CpG islands within the promoters of Ung and β-pol gene were 

identified using the MethPrimer software and primers were designed to amplify these CpG 

islands [88]. First, the methylation status of a CpG rich 262bp region (-1 to -262) of the Ung 
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promoter was analyzed in liver and brain tissues of folate adequate and folate deficient mice. 

Even though the FD animals show consistent upregulation in Ung expression in all tissues tested, 

our methylation analysis showed no difference in the methylation pattern between the folate 

adequate and folate deficient groups (Fig. 11).  

To further determine if failure to upregulate β-pol and complete repair was a consequence 

of changes in the methylation status in the promoter region, we analyzed the first 300bp cis-

acting region of the β-pol promoter and part exon 1 (+44 to -322) in three different tissues, 

namely, liver, brain and spleen. Yet again, there was no methylation differences between the 

folate adequate and folate deficient group in all the tissues tested (Fig.12). Interestingly, spleen 

which showed significant downregulation in β-pol mRNA expression did not show any 

difference in its methylation pattern as well. To our surprise none of the CpG sites were 

methylated in both the promoters under these conditions. To rule out the possibility of artifacts in 

our assay conditions as none of the CpG sites were methylated, we used p53 as a positive 

control. The methylation pattern of the region between exon 7 and exon 8 was analyzed similar 

to Ung and β-pol. Here we observed methylation at all the CpG sites within the region tested but 

again no difference between the folate adequate and folate deficient conditions (Fig.13). This 

data illustrates that differential regulation of the BER gene expression by folate deficiency is not 

through epigenetic alterations of the core regions of the promoters tested. Therefore, it is inviting 

to suggest interplay between transcription factors during folate deficiency as observed in our 

previous study [89].  

Discussion 

In this study, we show that FD animals have increased levels of DNA damage resulting in 

upregulation of the early repair enzymes in the BER pathway for initiation of repair.  As we have 
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shown previously, the failure to upregulate β-pol under FD conditions reduces BER capacity 

resulting in incomplete repair and accumulation of genotoxic repair intermediates thus 

compromising integrity of the genome [42].  Here we show that folate deficiency promotes DNA 

damage as indicated by increased levels of genomic uracil, 8-oxo-G and single strand breaks 

(data not shown). As further evidence, expression analysis of the genes in the BER pathway does 

not show coordinated expression with repair activity in response to DNA damage during folate 

deficiency i.e., the genes involved in the initial steps of the pathway, UNG and APE1/Ref-1, 

show upregulation but no change is observed in expression levels of β-pol.  In order to begin to 

elucidate the mechanism of gene regulation in the BER pathway we looked at methylation status 

of UNG and β-pol promoter regions.  In the analysis of the UNG promoter region we saw no 

change in methylation of the CpG sites in either the folate adequate or folate deficient condition 

in liver and brain.  Although β-pol gene expression was attenuated in the folate deficient 

condition, analysis of the β-pol promoter region as well showed no change in methylation pattern 

between folate adequacy or folate deficiency in all tissues tested.  Interestingly, β-pol mRNA 

was significantly downregulated in spleen during folate deficiency without any changes in the 

methylation profile in this tissue.  Hence, we find that under folate deficient conditions, the 

negative regulation of β-pol gene expression is not due to regional promoter methylation.  Taken 

together, UNG and β-pol expression are not regulated by alterations in the methylation pattern of 

the promoter regions studied.  

Folate metabolism is of central importance for one-carbon transfer reactions involved in 

DNA synthesis and repair mechanisms as well as SAM-dependant methylation of DNA.  Folate 

activated one-carbon units function in de novo purine biosynthesis, thymidylate biosynthesis and 

ensuring the provision of SAM, the primary methyl donor for most biological methylation 
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reactions including DNA promoter region methylation [90] as illustrated by Fig.1. In addition to 

these functions folate is also involved in the transulfuration pathway leading to the formation of 

cystathionine, cysteine and glutathione [91]. The enzymes in the folate metabolic cycle are 

sensitive to redox changes and would stimulate the transulfuration pathway under pro-oxidant 

conditions [92]. The carcinogenic properties of folate deficiency are suggested to be associated 

to the role of folate in one- carbon metabolism [93]. Impaired folate metabolism can arise from 

primary folate deficiency, secondary B-vitamin nutrient deficiency and genetic variations that 

effect the accumulation and utilization of folate. Deficiency in folate metabolism might disrupt 

purine and thymidine synthesis resulting in abnormal DNA synthesis and repair fidelity and 

uracil misincorporation into DNA. Folate deficiency may also lead to alterations in DNA 

methylation perhaps as a function of reduced S-adenosyl methionine levels and also oxidative 

stress by altering the thiol switches. Although the exact mechanism for folate deficiency induced 

carcinogenesis is largely unknown, support for induction of cancer is evidenced by an increase in 

single strand break [26, 60, 71, 94, 95] micronucleus formation [61, 96], chromosomal 

aberrations [97, 98] and mutation frequency [99, 100] in genomic DNA during folate deficiency. 

 Studies conducted on BALB/c mouse models show the susceptibility of this strain of 

mice to the development of intestinal tumors in response to low dietary folate by itself without 

any influence from other environmental factors. The authors show elevated dUTP:dTTP ratios, 

decreased apoptosis, and increased double-strand breaks indicated by p-H2AX staining in 

intestinal tissue [43, 44].  Greater DNA uracil content and micronucleus frequency, resulting 

from chromosome damage and breakage, was demonstrated in erythrocytes of folate deficient 

individuals indicating a relationship between the level of uracil in DNA and double strand breaks 

[25].  This theoretical model is based on studies of plasmid DNA with two closely spaced uracil 



www.manaraa.com

36 

 

within 14 base pairs of each other on opposing strands resulting in double strand breaks and 

linearization when transfected into cells expressing UNG [101].  Ung excision of the uracil 

creates an abasic site which if unresolved could cause clastogenic BER strand break 

intermediates.  Activation of BER under folate deficient conditions can potentially induce 

perpetual UDG activity and uracil incorporation during repair synthesis creating a state of ‘futile 

cycling’ of BER [102]. Chemotherapeutic agents such as 5-FU and pemetrexed are inhibitors of 

thymidylate synthase resulting in TMP depletion and dUMP accumulation.  Although the exact 

mechanism of cytotoxicity with these agents is not completely clear, it is known that uracil 

misincorporation and strand breaks are important events in the efficacy of these drugs.  A study 

with MEF cells homozygous null for β-pol show resistance to raltitrexed, a folate inhibitor of 

thymidylate synthase (TS), suggesting uracil misincorporation followed by BER contributes to 

the cytotoxicity of TS inhibitors [103].    Under conditions of folate deficiency, the response to 

genomic DNA uracil accumulation by BER could elicit the futile cycling or erroneous 

recombination by DNA repair, cell cycle arrest or signal downstream damage responses i.e. 

apoptotic pathways.   In line with the various studies done on folate deficiency, we show in our 

present study significantly elevated levels of uracil and an increase in the number of single-

strand breaks in the liver DNA under folate deficient conditions (data not shown). 

Folate deficiency also induces perturbations in methylation status from reduced capacity 

of SAM production resulting in global hypomethylation and regional hypermethylation 

potentially activating proto-onco genes and silencing tumor-suppressor genes.  The role of DNA 

damage could also play a role in methylation reactions as shown in rats, maintained on folate-

deficient/methyl-deficient diet, where there appears to be a high affinity for DNA 

methyltransferase to bind to unrepaired lesions resulting in increased methylation at those sites.  
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In turn, the methyltransferase enzyme is sequestered from the replication fork by the unrepaired 

lesions, promoting passive replication-dependant global demethylation [20]. In this case, the 

DNA damage caused by folate deficiency in the form of uracil misincorporation, 8-OHdG, 

abasic sites and strand breaks could potentially impact methyltransferase activity and alter DNA 

methylation.  Epigenetic alterations are preneoplastic, occurring early in the carcinogenic process 

and persist even after genotoxic insults have been repaired indicating that epigenetic analysis is 

vital to understanding the biopathways of cancer initiation and progression.  As our data show, 

the methylation pattern of two key base excision repair gene promoters is unaltered in different 

tissues in response to folate deficiency.  In spite of the increased accumulation of the DNA 

damages in our folate deficient group, our data shows that none of the CpG sites in the promoters 

tested were methylated similar to their folate adequate counterparts. Therefore, folate deficiency 

does not regulate UNG and β-pol expression by altering its core promoter methylation. In line 

with this, our previous study on β-pol promoter provide support for the involvement of 

regulatory factors which affects the overall expression of the gene [89]. We demonstrated 

differential binding of negative regulatory elements to Folic acid response region (FARR) in the 

β-pol promoter in response to folate deficiency and oxidative stress [89]. 

In conclusion, accumulation of genomic insults could lead to initiation and progression of 

cancer or could be balanced by down-stream pathways triggering recombination or apoptosis. 

The response to DNA damage is a critical factor determining the cell’s fate. Folate deficiency 

evidently impacts the BER pathway leading to the accumulation of DNA damages. As 

compromised DNA repair could lead to oncogenic transformation it becomes important to 

elucidate the mechanism by which folate deficiency causes this DNA repair deregulation. Our 

study provides evidence that regional DNA methylation is not the mechanism behind the 
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deregulation of the BER pathway, i.e., the differential expression of Ung and β-pol genes during 

folate deficiency. Therefore, further research to elucidate the involvement of other epigenetic 

alterations such as histone modifications and interplay of transcription factors in regulating BER 

gene expression during folate deficient is warranted. 
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Figure 6   Folate cycle Mechanism of one-carbon transfer reactions. 
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Figure 6 
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Figure 7  Effect of folate deficiency on levels of uracil in DNA and 8-oxoG lesions in liver of 

mice. (A) FA and FD (B) Relative levels of Uracil as measured by Uracil Aldehydic Slot Blot 

technique.  (C) Relative levels of 8-oxoG. Significant differences at p<0.01.  
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Figure 7 
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Figure 8  Effect of folate deficiency on expression of BER genes. mRNA expression from livers 

of folate-adequate and folate-deficient wild-type C57BL6 mice. Transcripts were quantified 

using real-time PCR and normalized to Gapdh or Rplo.  (A) UNG mRNA expression normalized 

against Rplo.  (B) Oxoguanine glycosylase (OGG1) mRNA expression normalized against Rplo.  

(C) Apurinic/Apyrimidinic endonuclease (APE1) mRNA expression normalized against Rplo.  

(D) DNA polymerase B (B-pol) mRNA expression normalized against Gapdh.  (E) X-ray repair 

cross complementing, XRCC-1, mRNA expression normalized against Gapdh.  (F) Ligase III, 

Lig-3, mRNA expression normalized against Gapdh.  Significant differences at p<0.01  
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Figure 8 
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Figure  9  Effect of folate deficiency and Ung expression in liver, brain and colon.  Uracil-DNA 

glycosylase mRNA expression in liver of folate-adequate and folate-deficient wild-type C57BL6 

mice.  Transcripts were quantified using real-time PCR and normalized to  Rplo.  Values 

represent an average (S.E.M) for data obtained from five animals in each group.  Significant 

differences at p < 0.01.    
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Figure  9 
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Figure 10  Effect of folate deficiency on β-pol expression in select tissues.  DNA polymerase β 

mRNA expression in liver, colon, spleen and brain of folate-adequate and folate-deficient wild-

type C57/Bl6 mice.  Transcripts were quantified using real-time PCR and normalized to Gapdh 

and Rplo.  Values represent an average (S.E.M) for data obtained from five animals in each 

group.  Significant differences at p < 0.01. 
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Figure 10   
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Figure 11  Effect of folate deficiency on UNG promoter methylation in liver. Methylation of 

CpG sites present within the 260bp CpG rich region in the UNG promoter using bisulfite 

sequencing assay.  The bisulfite treated DNA was PCR amplified using primers designed around 

CpG islands. The resulting amplicons were cloned into pGEM-T Easy Vector 
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Figure 12  Effect of folate deficiency and 2-NP on β-pol promoter methylation in liver.  

Methylation of CpG sites present within the β-pol promoter and exon 1 was determined in liver, 

brain, and spleen using bisulfite sequencing assay.  The bisulfite treated DNA was PCR 

amplified using primers designed around CpG islands. The resulting amplicons were cloned into 

pGEM-T Easy Vector. Plasmids from 7 colonies of each subclone were sequenced and the 

presence of preserved methylated cytosine residues representing methylation status was 

determined.  FA: Folate adequate; FD: Folate deficient. 
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Figure 12   
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Figure 13  Effect of folate deficiency on p53 promoter methylation.  As a positive control, 

methylation of CpG sites within p53 gene between CpG rich regions in exon 5 and exon 8 using 

bisulfite sequencing assay. The bisulfite treated DNA was PCR amplified using primers designed 

around CpG islands. The resulting amplicons were cloned into pGEM-T Easy Vector.    
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Figure 13   
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CHAPTER 3: IMPACT OF FOALTE DEFICIENCY AND β-POL 

HAPLOINSUFFICIENCY ON DNA DAMAGE AND REPAIR IN RESPONSE TO 

ACUTE AND LONG-TERM CARCINOGEN EXPOSURE  

Introduction 

Folate is a critical vitamin required for one-carbon metabolism in maintaining DNA 

stability through DNA synthesis, repair and methylation reactions.  Folates obtained from the 

diet can enter the folate cycle and transfer one-carbon units in the production of purines through 

addition of a formyl group to 5,10-methylene tetrahydrofolate yielding adenosine and guanine, 

and also in the production of thymidine by conversion of dUMP to dTMP via thymidylate 

synthase (TS).   Since the repair of DNA damage requires insertion of the correct nucleotide it is 

imperative that nucleotide pools are sufficient for the DNA synthesis step of DNA repair.  One-

carbon metabolism also includes the methionine cycle where 5-methyl THF remethylates 

homocysteine to methionine which is converted to SAM, the principle methyl donor in most 

biological reactions such as methylation of CpG sites in promoter regions [104]. 

Depletion of dietary folate results in an imbalance in one-carbon metabolism by limiting 

DNA precursors, compromising DNA repair and altering gene promoter methylation patterns.  

Folate deficiency has been implicated in the development of several human cancers and although 

the exact mechanism remains to be determined, it is the alteration in each of these processes that 

sets the stage for carcinogenesis.  The maintenance of DNA repair fidelity is a primary concern 

in folate limiting conditions as depletion of thymidine results in uracil misincorporation.  

Initiation of repair by removal of the misincorporated base under continued folate depletion can 

cause DNA strand breakage, chromosomal aberrations and malignant transformation [24], [25].  

The base excision repair (BER) pathway is responsible for small, non-helix distorting DNA 
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lesions including uracil misincorporation, 8-oxo-guanine, N-7 MeG, N-3 MeG as well as routine 

DNA damage mediated by ROS during normal cellular metabolism [84].  Our lab has shown that 

folate deficiency compromises BER by initiation repair but failure to induce β-pol to complete 

the process resulting in accumulation of toxic repair intermediates [70].  It has been reported that 

FD impairs excision of oxidative and alkylation damage in human lymphocytes [26].  Repair of 

8-oxodG lesions is inhibited in folate-depleted rat neurons [28]and colon cells from FD rats [29].  

8-oxo-dG is a highly mutagenic base, inducing G:C to T:A transitions if left unrepaired [74].  

Loss of DNA repair mechanisms can promote cancer development as observed in heritable colon 

cancer where mutations in mismatch repair genes are common in patients with this type of colon 

cancer and in xeroderma pigmentosum where individuals suffer from accelerated rates of skin 

cancer due to mutations in NER genes [105].  Polymorphisms in BER genes such as β-pol, 

hOGG1 and XRCC1 are being examined in conjunction with increased relative risk of certain 

cancers [106], [107].  However, currently there is no specific disease condition associated with 

loss of BER capacity.  Interestingly, many human cancers express variants of β-pol, the rate-

limiting enzyme in the BER pathway.  It is estimated that approximately 30% of human tumors 

display amino acid changes, deletions or over-expression in the β-pol transcript [108-110].  

Variants, depending on the type, could result in loss of repair fidelity and interference of repair 

due to functional-deplete variants leading to genomic instability and conferring a mutator 

phenotype [111, 112].  Overall, an imbalance in BER and key enzymes in the pathway (i.e. β-

pol) can result in a functional BER deficiency promoting the onset of carcinogenesis through 

genomic instability.   

Human exposure to DNA damaging agents occurs routinely from endogenous sources 

such as reactive oxygen species and exposure to exogenous sources from environmental agents 
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such as UV rays, ionizing radiation, chemicals and pollutants [113, 114].  Exposure to alkylating 

agents can be from many sources including chemotherapeutic drugs, diet, cigarette smoke, fuel 

combustion, and nitrosation of amines and amides mediated by enteric bacteria [115-117].  

Damage to the genome must be repaired in order to maintain genomic stability and prevent 

persistent, heritable mutations through DNA replication.   

Since folate deficiency has been demonstrated to compromise DNA repair and is a 

proposed driver of carcinogenesis, I investigated the mechanism of base excision repair in folate 

deficient animals treated with 1,2 dimethylhydrazine (DMH), a known carcinogen and SN-1 

alkylating agent.  In order to elucidate the in vivo response to alkylating agent, two time points 

were used to determine acute response (24-h) and long-term response (6-week) in both wild-type 

and β-pol haploinsufficient mice.  Here, in the wild-type animals it is shown that folate 

deficiency in response to acute treatment with carcinogen shuts down BER and induces 

apoptosis signaling.  However, after long-term treatment there is an adaptive response to DNA 

damage, showing initiation of repair but failure to increase overall BER resulting in clastogenic 

repair intermediates.  This loss of initial response to DNA damage allows for accumulation of 

damage which persists with continued exposure to carcinogen and failure to complete repair, 

resulting in overall increased mutagenesis driving oncogenic progression in the FD animals. 

Materials and Methods 

Animals- Experiments were performed in young (4 to 6 month old) C57BL/6-specific 

pathogen free male mice and mice heterozygous for the DNA polymerase β gene (β-pol
+/-

) and 

backcrossed to the C57BL/6 background.   All practices performed on animals were in 

agreement with the National Institutes of Health (NIH) guidelines for the care and use of 
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laboratory animals under a Wayne State University Animal Investigation Committee approved 

animal protocol.  Mice were maintained on a 12-h
 
light/dark cycle and given water ad libitum.   

Diets and Carcinogenic Treatment-  After acclimation for 7 days, wild-type (WT) and β-

pol
+/-

 mice were randomly assigned to two dietary groups; a folate adequate (FA) or folate 

deficient (FD) AIN93G-purified isoenergetic diet (Dyets, Inc., Lehigh Valley,
 
PA) as described 

previously (17). The FA group received a folate adequate diet containing
 
2 mg/kg folic acid. The 

FD group received a folate-deficient
 
diet containing 0 mg/kg folic acid.  Diets were stored at –

20°C.  1% succinyl sulfathiazole was added to all diets.   Eight weeks after assigned feeding, 

randomly selected mice from both FA and FD were injected i.p. with 1,2-Dimethylhydrazine 

HCL (DMH, 30 mg/kg body weight) in 10mmol/L of NaHCO3 (Fisher Scientific, Fair Lawn, 

NJ) 24-hours prior to sacrifice or for long-term treatment, animals were injected once weekly for 

6 weeks and then maintained on respective diets for an additional 8 weeks until sacrifice. 

Euthanasia was performed by CO2 asphyxiation as approved by the animal protocol. 

Gene Expression Analysis by Real-time PCR- The mRNA expression level of genes 

involved in BER pathway were quantified using real-time PCR. Briefly, total RNA was extracted 

from liver and colon tissue of folate added & folate deficient mice using RNeasy Kit (Qiagen, 

Valencia, CA). First strand cDNA was synthesized from 1 g RNA using ImprompII reverse 

transcriptase kit (Promega, Madison, WI) and purified using QIAquick PCR purification kit 

(Qiagen, Valencia, CA).  External standards for all the genes were prepared by subcloning the 

amplicons into pGEM-T easy vector. The vectors were linearized using EcoR1 to make the 

standard curves. All BER gene transcripts were normalized to RPLO. 



www.manaraa.com

59 

 

Western blot analysis- Western blot analysis was performed using 100μg nuclear protein 

as previously described (18). Proteins were separated by 12% SDS–PAGE gel, and transferred 

onto nitrocellulose membrane for Western blot analysis. The gel was stained with GelCode blue 

stain reagent (Pierce Biotechnology) to ensure equal protein loading.  Western analysis was 

accomplished using affinity purified polyclonal antisera developed against mouse β-pol, Ape1, 

and UDG. As an internal control for protein loading, membranes were reprobed with anti-Lamin 

B antibody (Santa Cruz Biotechnology, Santa Cruz, CA). The bands were visualized and 

quantified using a Biorad Molecular Imager after incubation in SuperSignal West Pico 

Chemiluminescent Substrate (Pierce Biotechnology, Rockford, IL).  Data are expressed as the 

integrated density value (I.D.V.) of the band per g of protein loaded. 

Detection of relative uracil levels- 4 ug DNA from liver was isolated as described [70] 

and blocked with methyoxyamine for 2 hr at 37 deg C, treated with 0.2 units of UDG (New 

England Biolabs) for 15 minutes at 37 deg C.  DNA is then probed with 2mM biotinylated ARP 

(Dojindo Molecular Technologies, MD) for 15 minutes at 37 deg C.  DNA is then immobilized 

on nitrocellulose membrane, the membrane washed in 5X SCC and baked at 80 deg C for 30 

minutes then incubated with HRP-containing hybridization buffer for 45 minutes.  After 

washing, the membrane is incubated in ECL (Thermoscientific, Rockford, IL) for 5 minutes and 

then visualized and exposed using Bio-Rad ChemiImaging system.  The data are expressed as 

integrated density value (IDV) of the band per microgram loaded. 

  Detection of relative abasic sites- 4ug of DNA from liver was isolated as described and 

probed with 2mM biotinylated ARP (Dojindo Molecular Technologies, MD) for 15 minutes at 

37 deg C.  DNA is then immobilized on nitrocellulose membrane, the membrane washed in 5X 

SCC and baked at 80 deg C for 30 minutes then incubated with HRP-containing hybridization 



www.manaraa.com

60 

 

buffer for 45 minutes.  After washing, the membrane is incubated in ECL (Thermoscientific, 

Rockford, IL) for 5 minutes and then visualized and exposed using Bio-Rad ChemiImaging 

system.  The data are expressed as integrated density value (IDV) of the band per microgram 

loaded. 

 UDG Activity Assay- 5ug of liver nuclear extract was incubated in a reaction mixture 

containing 1mM EDTA, 1mM DTT, 75mM NaCl. 0.5%BSA and 90fmol of a 5’-end labeled 

single-strand uracil-containing oligo with a 3’-protected end (Invitrogen).  Reactions were 

incubated at 37 deg. C for 1 hour and then terminated by addition of 5ug proteinase K and 1uL 

10% SDS for 30 min at 55 deg C.   Substrate and reaction products were separated on a 20% 

denaturing sequencing gel.  Glycosylase activity, indicated by presence of an 11-mer band, was 

visualized and quantified using the Biorad Molecular Imager.  Negative controls consisted of a 

reaction mixture without nuclear extract and UDG inhibitor was added to ensure glycosylase was 

the result of UDG specifically and not a complementary glycosylase.   

BER assay- DNA base excision repair was determined by BER assay.  Biotin-end labeled 

30-bp oligonucleotides (upper strand, 5’-ATATACCGCGGUCGGCCGATCAAGCTTATT-3’ 

and lower strand, 3’-TATATGGCGCCGGCCGGCTAGTTCGAATAA-5’) containing a G:U 

mismatch and HpaII restriction site were incubated in reaction mixture of 110mM Tris-HCl, 

5mM MgCl2, 1mM DTT. 0.1 mM EDTA, 2mM ATP, 20uM dNTPs, 10 units pCPK with 50 ug 

liver nuclear extract for 30 minutes at 37 degrees C, followed by termination of reaction at 95 

degrees C.  Reannealing of the oligos for 1 hour at room temperature and then centrifuged to 

pellet any denatured proteins.  Supernatant was treated with 20 units of HpaII RE for 1 hour at 

37 degrees C and then separated on a 20% denaturing sequencing gel.  Repair activity, indicated 
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by presence of a 16-mer band was visualized and quantified using Bio-Rad ChemiImaging 

system, was calculated by determining the ratio of product to substrate.    

Single-strand break assay- Assessment of single-strand breaks was determined by the 

Fast Micromethod DNA Single Strand Break assay as described by Henderson (DNA Repair 

Protocols).  This method is based on the ability of the specific fluorochrome Picogreen 

(Molecular Probes, Eugene OR) to make a stable complex with double-stranded DNA in alkaline 

conditions.  The preferential binding of Picogreen to double-strand DNA over single-strand 

DNA or proteins allows detection of single-strand breaks in the DNA by following the 

fluorometric signal intensity.  The decreasing signal intensity during denaturation is measured at 

Excitation/Emission of 485/538 using a fluorescence microplate reader (Genios Plus, Tecan) and 

is proportional to increasing single-strand break content.  Results were calculated after 10 

minutes in denaturing solution (1M NaOH, 20mM EDTA, 1% DMSO) and normalized to 

reference control sample and expressed as fluorescence units at 538 nm.    

Casp-3 Assay- Casp-3 activity was measured using EnzChek (Molecular Probes, Eugene 

OR) to detect apoptosis in liver cell extracts.  Arg-Glu-Val-Asp-AMC substrate specific 

proteolytic cleavage by Casp-3 is measured by fluorescence.  50uL of liver whole cell extract 

was used and incubated with Z-DEVD-AMC substrate for 30 minutes in the dark.  Fluorescent 

product was monitored by a fluorescent microplate reader (Genios Plus, Tecan).  Results are 

expressed as fluorescent units (FlU) at 440nm.   

Statistical Analysis- Statistical significance between means was determined using 

analysis of variance, t-test where p values less than 0.05 were considered statistically significant. 
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Results 

Analysis of DNA repair activities and damage resolution in response to 24-hour DMH treatment. 

Analysis of UNG mRNA expression, UDG protein expression, UDG activity and uracil levels in 

liver from FA or FD mice treated with DMH. 

 

Folate deficiency alters one-carbon metabolism resulting in changes in DNA synthesis 

and repair.  Low levels of 5,10-methylene THF reduces the conversion of dUMP to dUTP 

resulting in misincorporation of uracil.  Removal of this DNA lesion can be performed by several 

monofunctional glycosylases known as UDGs (uracil DNA glycosylases) and are encoded by the 

genes UNG and SMUG1.  The majority of UDG activity is due to expression of UNG2, the 

nuclear isoform from the UNG gene locus [118].  I therefore determined the mRNA expression 

of UNG and UDG protein expression in response to 24-hour DMH treatment in FA and FD 

mice.  The wild-type animals show a significant reduction in UNG mRNA expression in the FD 

condition when treated with DMH as compared to the FA condition (p = 0.001) (Fig 14A).  In 

the β-pol
+/- 

animals I observe reduced overall UNG expression with no significant change in 

expression between the FA and FD treated condition (Fig 14A).  UDG protein immunoblot 

analysis shows reduced protein expression in the DMH treated wild-type FD animals compared 

to the FA group correlating to the mRNA expression data (Fig 14B).  The UDG protein levels in 

the FD treated β-pol
+/-

 animals, however, is increased compared to the FA animals (Fig 14C).  

Although the UNG mRNA expression is not upregulated in the FD treated knockout animals, the 

immunoblot data indicates the protein is stabilized in response to DMH treatment in the FD 

animals.  DMH treatment in the wild-type animals failed to upregulate gene expression and 

increase protein expression of the critical uracil DNA glycosylase in response to FD indicating a 

possible abrogation of DNA repair initiation in these animals.   
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Folate deficiency has been shown to increase uracil levels in DNA through reduced 

thymine synthesis and increased dUMP/dTTP ratios [25].  Since dUTP is an excellent substrate 

for most replicative polymerases it can be readily misincorporated into DNA under folate 

limiting conditions.  To assess the level of uracil misincorporation, the uracil-ASB assay was 

performed on DNA isolated from livers of wild-type and β-pol 
-/+

 mice in the indicated treatment 

groups.  In wild-type animals, a significant reduction in uracil levels is observed in FD treated as 

compared to FA treated.  The knockout FD treated animals show reduction in uracil levels 

although this is not significant (Fig 15A).  As shown previously, uracil misincorporation was 

significantly increased in wild-type folate deficient animals yet here I see reduced levels of uracil 

while UDG is also reduced.  This finding could indicate possible attenuation in DNA synthesis 

due to increased damage burden, i.e. cell cycle checkpoint for decision to mediate repair or 

undergo apoptosis.   Uracil excision was determined by the UDG activity assay which measures 

the glycosylase activity of liver nuclear extract by ability to excise uracil from a 30-mer oligo 

substrate.  The wild-type animals show significant reduced glycosylase activity in the FD treated 

condition (Fig 15B), consistent with the reduced UNG mRNA expression and UDG protein 

expression.  In the β-pol
+/-

 mice, UDG activity is higher in the FA control and FA treated 

conditions compared to FD control and FD treated, with significance observed between FD 

untreated and FA treated (Fig 15C).  These differences could perhaps be due to reduced 

coordination of repair initiation in the β-pol haploinsufficient animals.  A UDG inhibitor was 

used in one reaction to demonstrate glycosylase activity was the result of UDG specifically, and 

not another uracil-specific glycosylase such as SMUG1, further indicating that the FD wild-type 

treated animals fail to initiate DNA repair. 
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Analysis of β-Pol gene expression, β-Pol protein expression and level of BER activity in liver 

from FA or FD mice treated with DMH. 

 

β-polymerase is a key enzyme in the BER pathway possessing both nucleotide transferase 

activity and dRP lyase activity essential for completion of single-nucleotide repair.  After 

Ape/Ref-1 hydrolyzes the abasic site leaving behind a 5’-deoxyribose phosphate (dRP), β-pol 

fills the gap of the excised nucleotide and removes the dRP group [41].  β-pol is a 39 kDa DNA 

polymerase where the 31 kDa domain contains the nucleotidyl transferase activity and the 8 kDa 

domain has the dRP lyase activity [38, 39].  It has been determined that the dRP lyase activity is 

essential and rate-limiting during BER initiated by monofunctional glycosylases [41].  The high 

level of sequence conservation of β-pol among species indicates high probability that it is 

essential for animal survival [119].  BER is attenuated in the absence of β-pol leading to 

hypersensitivity to genotoxins; β-pol null cells are hypersensitive to MMS [120], [121],[122]and 

β-pol gene deletions in KO mice display reduced DNA damage threshold and increased genomic 

instability [123] [124]. 

 In this study, β-pol mRNA expression was not significantly different between groups in 

the wild-type animals showing no increase in response to DMH treatment in either the FA or FD 

groups (Fig 16A).  In the knockout animals, overall mRNA β-pol expression is reduced by close 

to 50% compared to the wild-type counterparts as our lab has previously shown [125].  In 

response to DMH both the FA and FD knockout animals show upregulation of β-pol (Fig 16A).  

β-pol protein expression, as determined by western blot analysis, shows a significant increase in 

expression in both the FD wild-type and β-pol
+/- 

treated animals (Fig 16B,C), however this 

increase failed to reach statistical significance in the wild-type animals.  The higher protein 

expression in comparison to mRNA levels in the wild-type animals could indicate the cellular 

feedback to turn off gene expression in the presence of abundant protein.  However, the protein 



www.manaraa.com

65 

 

expression is several fold higher in the FD DMH compared to one FD control animal (data not 

shown).   As shown for the knockout animals, the protein is stabilized significantly in the FD 

DMH group compared to the controls showing a similar trend to the mRNA expression data.  To 

directly look at the effect of folate deficiency and acute impact of DMH on BER, I performed the 

BER activity assay on liver nuclear extracts from wild-type and β-pol
+/-

 animals in the indicated 

groups.  Interestingly, FD wild-type animals treated with DMH show a significant (p=0.04) 

increase in BER (Fig 16D) while glycosylase expression and activity is not induced as shown 

above.  Seeing as β-pol protein expression is stabilized in these animals, this could be an 

indication of dysregulation within the typical tightly-coordinated BER pathway.  Our lab has 

previously shown that imbalanced BER by lack of increased β-pol expression and BER activity 

results in accumulation of toxic repair intermediates [70].  However, imbalance created by 

increased β-pol expression and BER activity can also lead to functional deficiency of the BER 

pathway and promote genomic instability [126].  The β-pol knockout animals show no 

significant increase in BER activity in the FD DMH treated condition (Fig 16D).  The knockout 

animals showed increased UDG and APE/Ref1 expression indicating initiation of the pathway 

with failure to increase BER activity to complete repair.  To continue to elucidate the mechanism 

of DNA repair I investigated expression levels of other important genes and proteins in the BER 

pathway. 

Analysis of base excision repair pathway genes and Ape/Ref-1 protein levels in liver from FA or 

FD mice treated with DMH. 

 

The base excision repair pathway is an efficiently coordinated process in which the 

product of one reaction is passed on to the next reaction while keeping the toxic repair 

intermediates from accumulating and initiating downstream signaling effects.  The process is 

initiated by glycosylase damage recognition and removal of the offending base, creating an 
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abasic site.  From there, Ape/Ref-1 incises the phosphate backbone leaving behind a dRP moiety 

(in the case of a monofunctional glycosylase), and β-pol inserts the new base and removes the 

dRP group followed by ligation of the strand by Ligase-III [41].   

To further investigate the repair mechanisms in response to FD and acute DMH treatment 

I compared mRNA expression of genes in the BER pathway.  As shown above, the UNG 

glycosylase mRNA expression shows significant reduction in the FD wild-type treated animals 

compared to FA treated (Fig 17A).  The highest UNG expression in the knockout animals is 

observed in FA control, with overall expression lower than FA treated wild-type (Fig 17A).  

 MBD-4 (Methyl Binding Domain protein 4) acts as a uracil and thymine glycosylase that 

recognizes and removes G:T and G:U mismatches caused from spontaneous deamination at CpG 

sites [127].  If left unrepaired, these mismatches would result in transition mutations at promoter 

methylation sites [128], [129], [130], [131].  The mRNA expression of MBD-4 in the wild-type 

animals shows significant (p=0.002) loss of expression in FD DMH compared to FA DMH, and 

no significant induction of expression vs. FD control (Fig 17B).  The β-pol
+/-

 FD and treated 

animals show significantly reduced expression compared to FA control animals (Fig 17B).  

Although we don’t expect to see increased cytosine deamination with DMH treatment, it has 

been shown that some carcinogenic agents can preferentially alkylate CpG sites in promoter 

regions resulting in mutational hot spots [132], [133].  The severely reduced expression of MBD-

4 in the knockout animals could indicate failure to initiate additional glycosylase activity above 

that of UNG.   

 As shown above, β-pol mRNA is not significantly increased in response to DMH in the 

FD wild-type animals with the β-pol
+/-

 showing a 50% reduction in mRNA expression (Fig 17C).   

The completion of BER requires ligation of the DNA strand by DNA Lig-III.  mRNA expression 
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of Lig-III in wild-type animals shows significantly increased expression in the FA DMH treated 

compared to the FD DMH treated animals indicating Lig-III available to complete repair (Fig 

4D).  In the β-pol
+/- 

animals, a significant reduction in Lig-III expression is seen in the FD and 

DMH treated animals compared to the FA untreated (Fig 17D).  Both the FA wild-type and FA 

knockout mice demonstrate increased Lig-III expression correlating to the increased glycosylase 

expression and completion of repair.   

Poly (ADP-ribose) polymerase-1, or PARP-1 has been identified as a critical protein in 

BER as it binds to AP sites and single-strand breaks (SSBs), protecting these sites from cellular 

nucleases [134] while recruiting BER machinery to the site [135], [136].   PARP-1 has been 

described as a BER sensor and functions as a regulatory molecule in response to DNA damage 

[137], [138].  Parp-1 mRNA expression in the wild-type mice is significantly upregulated in the 

FA DMH treated condition compared to control and DMH treated FD animals indicating 

presence of PARP-1 with increased repair capacity (Fig 17E).  In conjunction with increased 

expression of the other enzymes in the BER pathway shown above, the FA untreated β-pol
+/- 

animals show significantly elevated expression of PARP-1 (p=0.0001) (Fig 17F).  The severe 

reduction in PARP-1 expression in the FD DMH treated β-pol
+/-

 animals also indicates that Parp-

1 is not available for protection of SSB as well as for activation and signaling of cell death.  

Parp1 has been shown to prevent the conversion of excessive SSBs to DSBs by binding to the 

SSB and providing protection until repair proteins are sufficient [139].  Parp1 has also been 

implicated as a sensor of BER, functioning to monitor the status of BER and to initiate cell death 

in the event of BER failure [138].  In the case of DMH treated β-pol
+/-

, absence of Parp1could 

have dual detrimental effects: i.) reduced protection of SSB repair intermediates providing 

opportunity for formation of DSBs and chromosomal damage and ii) reduced sensing of 
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inadequate BER to initiate cell death and prevent accumulation of damage leading to further 

genomic instability.   

 Monofunctional glycosylases require an AP endonuclease to incise the DNA backbone at 

the 5’end of the AP site leaving a SSB with a 5’dRP and a 3’OH group.   Expression of Ape/Ref-

1 protein, as determined by western blot analysis, is shown to be reduced in FD DMH treated 

wild-type animals compared to the FA DMH treated group (Fig 18A).  This is consistent with the 

lack of repair initiation observed in the FD animals.  In the β-pol+/- animals, expression of 

Ape/Ref1 is reduced in the FD untreated compared to FA untreated, consistent with higher 

glycosylase expression and activity as well as β-pol expression observed in the FA untreated 

animals.  Interestingly, the FD knockout animals show significant increase in Ape/Ref-1 

expression in response to DMH treatment (Fig 18B).  This correlates to the increased UDG 

expression seen in these animals indicating processing of the AP site induced by the glycosylase.   

Analysis of gene expression in response to alkylation damage in liver from FA or FD mice 

treated with DMH. 

 

Dimethylhydrazine is a chemical alkylating agent shown to induce methyl adducts to 

DNA bases in the form of O
6
Me-G and N-7 MeA [140].  Repair of alkylation damage by the 

BER pathway is initiated by methyl-purine glycosylase (MPG) and recognizes such damages as 

N-7 MeA and N-3 MeA.  The base lesion O
6
MeG is a stable adduct and can persist in DNA in 

the absence of the DNA repair protein, MGMT [141], [142].  The O
6
MeG lesion is repaired by a 

one-step mechanism in which the alkyl group is transferred from the oxygen in the guanine to a 

cysteine residue on MGMT irreversibly, thereby inactivating MGMT [143].  This lesion is 

highly mutagenic if not repaired resulting in A:T transition mutations. In this study, the mRNA 

expression of both MPG and MGMT in response to folate deficiency and DMH was determined.  

In the wild-type animals, FD eliminated response of MPG to DMH treatment and no increase in 
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expression is shown in FD or DMH treated β-pol
+/- 

animals (Fig 19A).  This finding indicates 

failure to initiate BER in response to alkylation damage in the FD condition.  The expression of 

MGMT is even more dramatically reduced in wild-type FD animals (p=0.001) in response to 

DMH and the knockout animals showing no significant upregulation of gene expression in 

response to DMH treatment (Fig 19B).  Loss of repair mechanisms to remove the highly 

mutagenic lesion O
6
MeG and persistence of alkylation damage such as N-7 MeG and N-3 MeA 

can result in mutations in onco genes such as Kras which is shown to be a potent driver in 

carcinogenesis.      

 Analysis of DNA damage in response to acute DMH treatment in liver from FA or FD mice. 

 

Damaged or misincorporated bases are removed by a lesion-specific glycosylase resulting 

in an abasic site that is then recognized by apurinic/apyrimidinic endonuclease, APE1/Ref-1.  

Abasic sites are considered intermediates in the BER pathway and can be formed spontaneously 

by hydrolysis of the N-glycosidic bond or following chemical modification of by DNA-

damaging agents and removal by DNA glycosylases [144].  In this study, the level of abasic sites 

were quantified using the adehydic-reactive probe slot-blot (ASB) method [145].  As shown, the 

number of abasic sites was reduced in DMH-treated FD wild-type animals as compared to the 

FA counterparts (Fig 20A).  The glycosylase activity, as shown above, is not increased in these 

animals further indicating failure to initiate repair of the damage and subsequent persistence of 

the lesions.  In the β-pol
+/-

 animals, the level of abasic sites in DMH-treated animals is increased 

with significant increase in the DMH-treated FD condition versus untreated animals (Fig 20A).  

Given that the DMH-treated FD knockout animals showed increased UDG levels, elevated UDG 

activity, and increased Ape/Ref-1 protein expression, repair of damage is initiated but persistence 

of AP sites indicates a block in completion of repair.   
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To look further into the level of DNA damage induced with 24 hour treatment of DMH in 

the FD condition, I determined the level of single-strand breaks using the Fast-micromethod for 

detection of single-strand breaks [146].  Single-strand breaks are a DNA repair intermediate 

where the DNA backbone has been incised but not polymerized by β-pol and subsequent ligation 

completed.  Interestingly, the level of SSBs in the wild-type FD DMH-treated animals is 

increased significantly (p= 0.004) compared to the FD control animals (Fig 20B).  This is 

inconsistent with previous findings where initiation of BER with failure to complete repair (i.e. 

loss of β-pol) resulted in an increase in SSBs [70].  Here, perhaps the imbalance of increased β-

pol protein expression is creating a signaling cascade that results in SSBs.  In the knockout 

animals, the FD DMH-treated show slightly elevated SSBs, although this finding is not 

significant (Fig 20B).  This is consistent with increased glycosylase activity and abasic sites 

shown in these animals.  Loss of PARP-1 recognition and protection of these sites can make 

them vulnerable to nuclease attack.  Determining the resolution of this damage will aid in 

elucidating the fate of the cell in terms of cell killing or selection of a transformed population, 

initiating carcinogenesis. 

 Analysis of apoptosis signaling in response to acute DMH treatment in liver from FA or FD 

mice. 

 

  During cell cycle progression, transition from G1 to S phase requires CHK1 signaling to 

determine the level of DNA damage before the cell undergoes replication and mitosis.  If the 

signaling determines the DNA damage to be too severe to be repaired, the cell will undergo 

apoptosis to prevent propagation of transformed progeny.  Having determined BER activity and 

level of DNA damage in the form of abasic sites and SSBs, I then characterized the apoptotic 

response to acute DMH treatment under the condition of folate deficiency.  The wild-type DMH-

treated FD animals show significant induction of CASP-3 mRNA expression compared to FD 
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control (p= 0.01) and FA DMH (p= 0.007) demonstrating increased apoptosis signaling in 

response to DNA damage and failure to repair (Fig 21A).  In the β-pol
+/-

 animals, overall CASP-

3 expression is reduced with non-significant increase in FD DMH treated versus FD control (p= 

0.26) (Fig 21A).    Loss of apoptosis signaling in the presence of accumulation of damage and 

increased damage tolerance can lead to increased mutagenicity.  To further confirm presence of 

apoptotic signaling, the Enz-chek Casp-3 activity assay was used to detect enzymatic cleavage 

by Casp-3 and Casp-7.   As shown in Fig 21B, in the wild-type animals, Casp-3 activity was 

indeed increased in the FD DMH treated compared to FD control and FA DMH-treated and this 

was significant (p= 0.01 and 0.03, respectively).  This shows that the activity of Casp-3 

correlates to the mRNA expression for the wild-type animals.  In the β-pol
+/-

 animals, the FA 

untreated show slightly increased Casp-3 activity although this was not significant.  Interestingly, 

the wild-type FD treated animals showed increased Casp-3 activity compared to the knockout 

counterparts, and this result was significant (p=0.008) (Fig 21B).   

Overall, the acute response to DMH treatment in folate deficient wild-type animals 

demonstrates a reduced capacity to upregulate glycosylases in order to initiate repair, reduced 

APE/Ref-1 to process damage, and shows upregulation of β-pol indicating a possible imbalance 

in BER signaling.  The increased level of damage and failure to remove and repair the damage in 

these animals appears to result in increased SSBs and signaling of the apoptosis cascade.  The β-

pol
+/-

 FD DMH-treated animals, however display an attempt to initiate repair and process the 

damage but failure to complete BER.  Although the number of SSBs is increased in these 

animals, Casp-3 expression and activity is not induced indicating tolerance of DNA damage.   In 

order to understand how these initiating events progress, I studied the effect of 6-week treatment 

of DMH (long-term) on folate deficient animals. 
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 Analysis of DNA repair activities and damage resolution in response to 6-week DMH treatment. 

 

Analysis of UNG mRNA expression, UDG activity and uracil levels in liver from FA or FD mice 

treated with 6-week course of DMH. 

 

In the condition of folate deficiency, the altered dUMP:dTMP ratios  result in increased 

uracil misincorporation requiring a uracil DNA glycosylase to recognize and remove the 

damage.  As our lab has previously shown, UNG expression is increased in response to folate 

deficiency and expression is further induced in response to FD and oxidative stress from animals 

treated with 2-NP (data not shown).  In this study, a similar trend is observed showing increased 

UNG mRNA expression in response to FD in both the wild-type and β-pol
+/-

 animals and the 

expression is further increased with treatment of DMH (Fig 22).  To assess the level of uracil 

misincorporation, the uracil-ASB assay was performed on DNA isolated from livers of wild-type 

and β-pol
-/+

 mice in this long-term treatment group.  In the wild-type animals, the uracil levels 

were decreased in both the FA and FD DMH-treated groups compared to the untreated controls, 

as well as in the DMH-treated knockout animals (Fig 23A).  This could indicate adapted 

glycosylase response to damage and efficient removal of the misincorporated uracil.  However, 

when UDG activity was measured, the glycosylase activity in the FD treated animals was 

reduced compared to the FA counterparts (Fig 23B).  The reason for increased UNG expression 

but reduced glycosylase activity in these animals is unclear, but perhaps indicative of an 

imbalance between gene expression and enzyme activity.   

Analysis of β-Pol gene expression and level of BER activity in liver from FA or FD mice treated 

with a 6-week course of DMH. 

 

To further characterize the BER pathway in FD long-term DMH-treated animals, I 

looked at mRNA expression levels of β-pol.  β-pol gene expression was not induced in response 

to FD and DMH (Fig 24A).  This has been demonstrated previously, failure to upregulate β-pol 
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in response to folate deficiency and DNA damage.  Analysis of BER activity revealed no 

significant increase in activity in response to FD and DMH in the wild-type animals (Fig 24B), 

displaying a reduction in activity in the FD DMH-treated group.  This is in line with previous 

studies showing failure to upregulate repair in FD conditions in response to DNA damage. 

Analysis of gene expression in response to alkylation damage in liver from FA or FD mice 

treated with 6-week course of DMH. 

 

As previously discussed, the removal of alkylating agent-induced lesions is critical to the 

integrity of DNA.  In this study, the mRNA expression of both MPG and MGMT in response to 

folate deficiency and DMH was determined.  In the wild-type animals, increased MPG mRNA 

expression was observed in the FD DMH-treated condition and down-regulation of MPG was 

observed in the knock-out animals compared to the wild-type counterparts (Fig 25A).  The 

expression of MGMT was also upregulated in the wild-type FD DMH-treated animals with 

reduced expression in the β-pol
+/-

 animals (Fig 25B).  The increased glycosylase expression in 

the wild-type FD animals again indicates initiation of repair and upregulation of MGMT shows 

response to treatment with the alkylating agent DMH.   

Analysis of DNA damage in response to 6-week DMH treatment in liver from FA or FD mice. 

 

In the FD DMH-treated wild-type animals, there is an increased induction of AP sites and 

this increase nears significance compared to the FD untreated group (p=0.07).  The increase in 

monofunctional glycosylase activity (UNG, MPG) with loss of subsequent processing of the site 

can lead to accumulation of abasic sites.   In the β-pol
+/-

 animals, the level of AP sites is reduced 

in the FD condition compared to FA and this result is significant (p=0.03) (Fig 26A).  Analysis 

of the level of SSBs revealed a significantly reduced number of SSBs in the FD wild-type 

animals versus the FD untreated (p=0.002) (Fig 26B).  It is interesting to note the dramatic 

induction of SSBS in the FA DMH-treated wild-type animals.  The β-pol
+/-

 animals displayed 
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overall reduced number of SSBs compared to untreated wild-type, but FD knockout showing 

near significant (p=0.056) increase compared to FA knockout.   

Analysis of DNA apoptosis signaling in response to 6-week DMH treatment in liver from FA or 

FD mice. 

Casp-3 mRNA levels were measured by real-time PCR and normalized to RPLO.  The 

mRNA expression is not significantly reduced in FD treated wild-type animals compared to 

either FA or FD untreated, however FA treated animals showed significant reduction in Casp-3 

mRNA expression (p=0.04) (Fig 27A).  In the β-pol
+/- 

animals, Casp-3 mRNA was reduced in 

FD treated, although this result did not reach significance (p=0.058).  Activity of Casp-3 was 

measured using the Enz-Chek assay as described in “Materials and Methods”.  Induction of 

Casp-3 activity was observed in both wild-type treated FA and FD animals compared to 

untreated controls (p=0.001 and p=0.02 respectively) (Fig 27B).   The FD β-pol
+/- 

animals 

displayed reduced casp-3 activity compared to FA counterparts, and this result was significant 

(p=0.005) correlating to the Casp-3 mRNA data shown above. 

Analysis of gene expression in mucosa in response to DMH treatment 

Investigation of mRNA expression of DNA repair genes in mucosa from 24-h treated 

wild-type and knockout animals revealed overall upregulation in the folate deficient animals with 

a pattern of high expression in the FD knockout control animals (Fig 28).  Interestingly, the 

CASP-3 expression in these untreated animals is reduced compared to DMH treated animals 

following the pattern of upregulation of genes to repair damaged DNA and inhibition of 

apoptosis.  However, the CASP-3 expression is still significantly above control untreated and 

observing the trend in these mucosa data is upregulation in response to FD, it is possible that 

overall gene expression is increased.  Mucosal cells have a high rate of DNA synthesis and a 
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turnover time of 24-48 hours which may explain higher response to damage by increasing gene 

expression in the FD untreated and DMH treated animals.  

Under long-term DMH treatment, there are no significant differences in UNG mRNA 

expression between FA and FD or untreated controls (Fig 29A).  In response to alkylation 

damage however, there is a decrease in MPG expression in the FD treated wild-type animals and 

this decrease is consistent in the knockout groups (Fig 29B).  MGMT expression (Fig 29C), is 

induced in the FA DMH-treated but attenuated in FD treated and the knockout animals indicated 

compromised repair of alkylation damage in the mucosa of these animals.  CASP-3 mRNA 

expression was determined and shows induction in the FA DMH-treated wild-type animals and 

in the FD knockout animals (Fig 29D), consistent with microarray data from these animals. 

Discussion 

This study compares the initial DNA repair response and damage resolution in folate 

adequate and folate deficient animals acutely treated with carcinogen (24-h) to the DNA repair 

and damage response after long-term (6-week) exposure.  As shown in the 24-h treatment, FD 

wild-type animals demonstrate an overall reduction in repair initiation in response to DMH 

treatment by failure to upregulate UNG mRNA expression, UDG protein levels and activity.  

APE1 expression is reduced consistent with loss of repair initiation and processing.  

Interestingly, β-pol protein expression is induced in these animals and BER activity is induced.  

One explanation for this is an imbalance in BER by upregulation of β-pol.  Elevated expression 

has been observed in several human cancers caused by deletions and amino-acid substitutions 

[147-149].  Altered β-pol transcripts result in dysfunctional protein leading to erroneous blocked 

repair [150].  Another possible explanation for elevated protein expression in these animals is 

left-over stabilized expression prior to DMH exposure.  As indicated by failure to increase β-pol 
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mRNA levels, it is possible that in the short-term treatment, mRNA expression hasn’t caught up 

to protein exp.  A look at gene expression of enzymes in the BER pathway shows loss of 

expression throughout the pathway in the FD wild-type animals.  Whereas the FA animals 

demonstrate increased glycosylase expression, increased PARP-1 expression and increased Lig-3 

expression in response to DMH.  Analysis of the level of abasic sites reveals significant 

reduction in the FD animals exposed to DMH.  Since APE1 expression is not increased in these 

animals, one would expect to see an accumulation of AP sites in response to DNA damage.  

However, since glycosylase expression fails to be induced, it is probable that the damaged bases 

are not being removed, resulting in persistent lesions.  It has been shown in b-pol null cells 

treated with MMS failed to induce AP sites allowing stable lesions such as N7-MeG and N3-

MeA to persist in the DNA [40].  Further analysis of DNA damage includes determining the 

number of SSBs using the fast micromethod of SSB detection.  Here, an increase in the number 

of SSBs is seen in the FD wild-type animals versus FA animals.  Accumulation of excessive base 

lesions could explain this increase.  Apoptosis signaling is also increased in the FD wild-type 

animals in response to DMH as indicated by increased Casp-3 mRNA expression and activity.   

 The β-pol
+/- 

animals present a different response to acute DMH treatment than the wild-

type counterparts.  In these animals, FD induces expression of UNG and APE1 but no significant 

increase in BER activity.  Parp-1 gene expression is reduced significantly in the knockout 

animals, with the lowest expression observed in the FD β-pol
+/- 

animals indicating Parp-1 is not 

available for protection of SSBs and recruitment of late-stage BER enzymes.  Interestingly, the 

level of AP sites is increased in the FD knockout animals even with increased APE1 expression 

to process the abasic site.  AP sites can arise spontaneously as well and give rise to point 
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mutations and SNPs if DNA replication is not blocked [151].  In response to DMH treatment, 

Casp-3 mRNA expression and activity is not significantly increased in the FD knockout animals.   

 After prolonged treatment with DMH, the folate deficient wild type animals demonstrate 

an adapted response to DNA damage by inducing UNG, MPG and MGMT mRNA expression.  

However, β-pol gene expression is not induced in these animals and the level of BER activity is 

not significantly higher than the FD untreated animals.   The number of abasic sites in the FD 

treated animals is significantly higher than FA or untreated control, corresponding to increased 

glycosylase removal of the damaged base but loss of sequential repair resulting in accumulation 

of BER intermediates.  The level of SSBs in the FD treated animals is also higher than FD 

control animals (p=0.003) indicating further accumulation of DNA damage.  Analysis of 

apoptosis signaling shows no significant increase in Casp-3 mRNA expression in the FD treated 

animals compared to controls, however the Casp-3 activity is higher in these animals and this 

result is significant (p=0.01).   

Interestingly, the FA treated wild-type animals show very high levels of SSBs compared 

to controls and the FD animals.  This could be a temporary artifact induced with increased 

overall repair in these animals, also explained by lack of apoptosis signaling (Casp-3 mRNA 

expression) in response to these breaks.  However the possibility that folate supplementation 

after initiation of carcinogenesis could accelerate proliferation of cells with accumulated DNA 

damage is inviting to explore.  There is emerging evidence that folate supplementation could be 

detrimental depending on the stage of carcinogenic transformation. As noted previously, Kras 

mutations are found in 30% of all cancers [152], and has been shown to be associated with 

increased expression of DHFR and TS, allowing Kras mutated cell to utilize the folate salvage 

pathway for DNA synthesis and oncogenic progression. 
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Clinical relevance from this study is the demonstration profound loss of DNA repair 

mechanisms in the folate deficient wild-type animals in response to acute treatment with 

alkylating agent.  Many biological and chemo therapies used in the treatment of cancer require 

dual-agent regimens: one agent to induce cytotoxic DNA damage and another agent to inhibit the 

repair of the damaging lesion and promote cell killing.  BER inhibitors targeting PARP-1, β-pol, 

and APE1 are being investigated in clinical trials to improve efficacy of chemotherapies.  One 

such chemotherapy is temozolomide (TMZ) an alkylating agent used in the treatment of several 

cancers.  This agent induces a spectrum of DNA lesions including O
6
MeG, N7-MeG and N3-

MeA [153], most of which is alkylation damage that can repair by the base excision repair 

pathway.  Resistance to treatment with TMZ is associated with high levels of expression of DNA 

repair genes, rendering targeting of DNA repair pathways an attractive option in combinatorial 

therapies.  As shown in this study, there is reduced BER response under FD conditions with 

acute DMH treatment.  It is inviting to suggest that temporary folate deficiency could be used as 

an alternative mechanism to inhibit DNA repair and improve efficacy of TMZ.  In this way, the 

clinical treatment plan would involve only a single-agent chemotherapy, therefore reducing 

toxicity and enhancing tolerability in patients.   

This extensive investigation of DNA repair mechanisms and apoptosis signaling showed 

inhibited repair during acute carcinogen treatment followed by upregulation in apoptosis 

signaling.  These studies were performed in liver, a tissue with comparatively slow cell turnover.  

However, excessive cellular loss due to injury, necrosis, or apoptosis, triggers rapid hepatocyte 

proliferation in order to regenerate the tissue.  Since we observe induced apoptosis signaling in 

the livers of FD wild-type treated animals, this does not generally confer protection of oncogenic 

initiation through programmed cell death.  The loss of repair and tolerance of damage in cells 
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could lead to selection of those initiated cells and proliferation of a cell population with a 

mutator phenotype.  In future studies, it would be valuable to assess the amount and type of 

lesions present in the DNA and examine markers of cell proliferation in this tissue.    

  



www.manaraa.com

80 

 

Figure 14  Effect of folate deficiency and 24-h DMH on UNG mRNA expression and UDG 

protein levels in liver of wild type and β-pol haploinsufficient mice.  A, UNG mRNA expression 

from livers of C57Bl/6 wild type and β-pol haploinsufficient mice as determined by real-time 

PCR and normalized to RPLO.  B, The level of UDG protein in liver nuclear extract from wild 

type or C, β-pol haploinsufficient mice on folate adequate or folate deficient diets treated with 

DMH was determined by Western blot analysis.  The level of UDG protein was normalized 

based on the amount of protein loaded on each gel.  The I.D.V. (integrated density value) 

corresponding to the level of UDG protein was quantified by the BioRad Molecular Imager® 

System.  FA: Folate adequate; FD: folate deficient. 
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Figure 15  Effect of folate deficiency and  24-hDMH treatment on Uracil levels and UDG 

activity in liver from wild type and β-pol haploinsufficient mice.  A, DNA from liver was isolated 

as described in “Materials and Methods”.  DNA was blocked with methoxyamine, treated with 

UDG, probed with biotinylated ARP, and immobilized via vacuum filtration onto a nitrocellulose 

membrane.  Bands were visualized and quantified using the BioRad Molecular Imager® System 

and data are expressed as I.D.V. per ug DNA used.  B, Assessment of UDG activity by ability to 

excise uracil in liver from wild type and C, β-pol haploinsufficient mice was performed as 

described in “Materials and Methods”.  5’-end labeled uracil-containing oligo was incubated in 

5ug liver extract and separation of substrate and reaction products were separated on a 20% 

denaturing sequencing gel.  Glycosylase activity, indicated by presence of an 11-mer band, was 

visualized and quantified using the BioRad Molecular Imager® System and calculating the 

relative amount of the 11-mer oligonucleotide product with the unreacted 30-mer substrate 

(product/product + substrate).  Results are expressed as I.D.V. per ug protein.  FA: Folate 

adequate; FD: folate deficient.  Significant differences at p<0.05. 
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Figure 16  Effect of folate deficiency and 24-h DMH treatment on β-pol mRNA expression and 

β-pol protein levels and base excision repair capacity in liver from wild type and β-pol 

haploinsufficient mice.  A, β-pol mRNA expression from livers of C57Bl/6 wild type and β-pol 

haploinsufficient mice as determined by real-time PCR and normalized to RPLO.  B, The level 

of β-pol protein in liver nuclear extract from wild type or C, β-pol haploinsufficient mice on 

folate adequate or folate deficient diets treated with DMH was determined by Western blot 

analysis.  The level of β-pol protein was normalized based on the amount of protein loaded on 

each gel.  The I.D.V (integrated density value) corresponding to the level of β-pol protein was 

quantified by the BioRad Molecular Imager® System.  D, Repair activity was analyzed by 

incubation of nuclear liver extract with G:U mismatch oligo and treatment with HpaII restriction 

endonuclease.  Substrate and reaction products were separated on a sequencing gel and 

visualized and quantified with BioRad Molecular Imager® System and repair activity was 

assessed by appearance of a 16-mer fragment.  Results are expressed as I.D.V per ug protein.  

FA: Folate adequate; FD: folate deficient.  Significant differences at p<0.05. 
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Figure 17  Effect of folate deficiency and 24-h DMH treatment on expression of BER genes in 

liver of wild type and β-pol haploinsufficient mice.   Transcripts were quantified using real-time 

PCR and normalized to Rplo.  A, UNG mRNA expression normalized against Rplo.  B, MBD-4 

mRNA expression normalized to Rplo.  C, β-pol mRNA expression normalized to Rplo.  D, Lig-

3 mRNA expression normalized to Rplo.  E-F, Parp-1 mRNA expression normalized to Rplo.  E, 

wild-type.  F, knockout.  FA: Folate adequate; FD: folate deficient.  Significant differences at 

p<0.05 
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Figure 18  The level of APE/Ref-1 protein in liver nuclear extract from wild type or β-pol 

haploinsufficient mice on folate adequate or folate deficient diets treated 24-h with DMH.  

Protein expression was determined by Western blot analysis.  The level of APE/Ref-1 protein 

was normalized based on the amount of protein loaded on each gel.  The I.D.V. (integrated 

density value) corresponding to the level of APE/Ref-1 protein was quantified by the BioRad 

Molecular Imager® System. A, wild-type. B, β-pol
+/-

 animals.  Significant differences at p<0.05. 
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Figure 18   
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Figure 19  Effect of folate deficiency on gene expression in liver in response to alkylation 

damage in 24-h DMH-treatment in wild type and β-pol haploinsufficient mice.  Transcripts were 

quantified using real-time PCR and normalized to Rplo.  A, MPG mRNA expression.  B, MGMT 

mRNA expression.  FA: Folate adequate; FD: folate deficient.  Significant differences at p<0.05. 
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Figure 19   
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Figure 20  Analysis of DNA damage in response to folate deficiency and 24-h DMH treatment in 

liver of wild type and β-pol haploinsufficient mice.  A, Levels of AP sites as determined by the 

ASB assay.  DNA was isolated from liver extracts and the levels of aldehydic DNA lesion 

(ADLs) was measured by the ASB assay as described in “Materials and Methods”.  DNA was 

blocked with methoxyamine, probed with biotinylated ARP, and immobilized via vacuum 

filtration onto a nitrocellulose membrane.  Bands were visualized and quantified using the 

BioRad Molecular Imager® System and data are expressed as I.D.V. per ug DNA loaded.  B, 

Level of single-strand breaks (SSBs) was determined using the Fast micromethod of SSB 

detection as described in materials and methods. Significant differences at p<0.05.  
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Figure 20   
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Figure 21  Effect of folate deficiency and 24-h DMH on apoptosis pathways in liver of wild type 

and β-pol haploinsufficient mice.  A, Casp-3 mRNA expression.  Transcripts were quantified 

using real-time PCR and normalized to Rplo.  B, Casp-3 activity assay by EnzChek Molecular 

Probes was used to detect apoptosis in liver cell extracts in folate adequate and folate deficient 

wild type and β-pol haploinsufficient mice.  Arg-Glu-Val-Asp-AMC substrate specific 

proteolytic cleavage by Casp-3 is measured by fluorescence.  Fluorescent product is monitored 

by a fluorescent microplate reader.  Results are expressed as fluorescent units (FlU) at 440nm.  

Significant differences at p<0.05. 
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Figure 21   
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Figure 22  Effect of folate deficiency and long-term DMH treatment on UNG mRNA expression 

in wild type and β-pol haploinsufficient mice.  UNG mRNA expression from livers of C57Bl/6 

wild type and β-pol haploinsufficient mice as determined by real-time PCR and normalized to 

RPLO.  FA: Folate adequate; FD: folate deficient.  Significant differences at p<0.05. 
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Figure 22   
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Figure 23  Effect of folate deficiency and long-term DMH treatment on Uracil levels and UDG 

activity in liver from wild type and β-pol haploinsufficient mice.  A, DNA from liver was isolated 

as described in “Materials and Methods”.  DNA was blocked with methoxyamine, treated with 

UDG, probed with biotinylated ARP, and immobilized via vacuum filtration onto a nitrocellulose 

membrane.  Bands were visualized and quantified using the BioRad Molecular Imager® System 

and data are expressed as I.D.V. per ug DNA used.  B, Assessment of UDG activity by ability to 

excise uracil was performed as described in “Materials and Methods”.  5’-end labeled uracil-

containing oligo was incubated in 5ug liver extract and separation of substrate and reaction 

products were separated on a 20% denaturing sequencing gel.  Glycosylase activity, indicated by 

presence of an 11-mer band, was visualized and quantified using the BioRad Molecular Imager® 

System and calculating the relative amount of the 11-mer oligonucleotide product with the 

unreacted 30-mer substrate (product/product + substrate).  Results are expressed as I.D.V. per ug 

protein.  FA: Folate adequate; FD: folate deficient.  Significant differences at p<0.05. 
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Figure 23   
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Figure 24  Effect of folate deficiency and long-term DMH treatment on β-pol mRNA expression 

and base excision repair capacity in liver from wild type mice.  A, β-pol mRNA expression from 

livers of C57Bl/6 wild-type mice as determined by real-time PCR and normalized to RPLO.  B, 

Repair activity was analyzed by incubation of nuclear liver extract with G:U mismatch oligo and 

treatment with HpaII restriction endonuclease.  Substrate and reaction products were separated 

on a sequencing gel and visualized and quantified with BioRad Molecular Imager® System and 

repair activity was assessed by appearance of a 16-mer fragment.  Results are expressed as I.D.V 

per ug protein.  FA: Folate adequate; FD: folate deficient. 
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Figure 24   
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Figure 25  Effect of folate deficiency on gene expression in response to alkylation damage in 

long-term DMH-treated wild type and β-pol haploinsufficient mice.  Transcripts were quantified 

using real-time PCR and normalized to Rplo.  A, MPG mRNA expression.  B, MGMT mRNA 

expression.  FA: Folate adequate; FD: folate deficient. 
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Figure 25   
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Figure 26  Analysis of DNA damage in response to folate deficiency and long-term DMH 

treatment in liver of wild type and β-pol haploinsufficient mice.  A, Levels of AP sites as 

determined by the ASB assay.  DNA was isolated from liver extracts and the levels of aldehydic 

DNA lesion (ADLs) was measured by the ASB assay as described in “Materials and Methods”.  

DNA was blocked with methoxyamine, probed with biotinylated ARP, and immobilized via 

vacuum filtration onto a nitrocellulose membrane.  Bands were visualized and quantified using 

the BioRad Molecular Imager® System and data are expressed as I.D.V. per ug DNA loaded.  B, 

Level of single-strand breaks (SSBs) was determined using the Fast micromethod of SSB 

detection as described in materials and methods.  Significant differences at p<0.05. 
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Figure 26   
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Figure 27  Effect of folate deficiency and long-term DMH treatment on apoptosis pathways in 

liver of wild type and β-pol haploinsufficient mice.  A, Casp-3 mRNA expression.  Transcripts 

were quantified using real-time PCR and normalized to Rplo.  B, Casp-3 activity assay by 

EnzChek Molecular Probes was used to detect apoptosis in liver cell extracts in folate adequate 

and folate deficient wild type and β-pol haploinsufficient mice.  Arg-Glu-Val-Asp-AMC 

substrate specific proteolytic cleavage by Casp-3 is measured by fluorescence.  Fluorescent 

product is monitored by a fluorescent microplate reader.  Results are expressed as fluorescent 

units (FlU) at 440nm.  FA: Folate adequate; FD: folate deficient.  Significant differences at 

p<0.05. 
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Figure 27   
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Figure 28  Effect of folate deficiency and 24-h DMH treatment on expression of BER and DNA 

repair genes in mucosa of wild type and β-pol haploinsufficient mice.   Transcripts were 

quantified using real-time PCR and normalized to Rplo.  A, UNG mRNA expression normalized 

against Rplo.  B, MBD-4 mRNA expression normalized to Rplo.  C, MPG mRNA expression 

normalized to Rplo.  D, MGMT mRNA expression normalized to Rplo.  E, LIG-3 mRNA 

expression normalized to Rplo.  F, PARP-1 mRNA expression normalized to Rplo.  G, CASP-3 

mRNA expression normalized to Rplo.  FA: Folate adequate; FD: folate deficient.  Significant 

differences at p<0.05. 
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Figure 29  Effect of folate deficiency and long-term DMH treatment on expression of BER and 

DNA repair genes in mucosa of wild type and β-pol haploinsufficient mice.   Transcripts were 

quantified using real-time PCR and normalized to Rplo.  A, UNG mRNA expression normalized 

against Rplo.  B, MPG mRNA expression normalized to Rplo.  C, MGMT mRNA expression 

normalized to Rplo.  D, CASP-3 mRNA expression normalized to Rplo.  FA: Folate adequate; 

FD: folate deficient.  Significant differences at p<0.05. 
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Figure 29   
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CHAPTER 4: SUMMARY AND FUTURE DIRECTIONS 

 Folate deficiency has been implicated in the etiologies of many cancers as described 

previously.  The mechanism of carcinogenesis under folate deficiency is yet undetermined but 

many studies have shown altered methylation patterns in the promoter regions of proto-

oncogenes and tumor suppressor genes resulting in an adverse gene expression profile leading to 

the initiation and onset of cancer.  The pathway in which folate provides precursors for DNA 

repair and synthesis is another mechanism that could drive an oncogenic phenotype if 

deregulated by loss of folate substrates entering the cycle.  DNA repair mechanisms will also be 

altered under conditions of reduced purine and thymidine synthesis as occurs with folate 

deficiency. 

 In this study, I demonstrate altered gene expression of critical base excision repair genes 

and DNA repair capacity under folate deficient conditions and this response is exacerbated with 

treatment of carcinogen.  The changes in gene expression appear to be tissue-specific, showing 

loss of initiation and resolution of repair in liver with acute treatment whereas in mucosa, BER 

gene expression is induced in response to FD and DMH.  One interesting finding is the severe 

attenuation of MGMT expression observed consistently under FD DMH-treated conditions in 

liver and colon.  The DNA adduct O
6
MeG is produced by SN1-type alkylating agents and is a 

stable lesion causing base mispairing and subsequent point mutations [154].  It is considered a 

major mutagenic and carcinogenic DNA adduct induced by alkylating agents [155].  The critical 

function of MGMT in removing O
6
MeG lesions has been demonstrated in mice transgenic for 

human MGMT displaying reduced liver tumors after treatment with MNU [156], protection from 

lung carcinogenesis [157] and formation of aberrant crypt foci and K-ras mutations in colons of 

AOM-treated  mice [158], [159].  Furthermore, MGMT has been suggested to be a key enzyme 
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in protection of human sporadic colon cancer, as expression of MGMT is lost in nearly 50% of 

these cancers [160].  Although the O
6
MeG lesion is repaired by separate DNA repair mechanism 

of direct reversal, BER is responsible for repairing the N-methylation lesions induced by 

alkylating agents.  It has been demonstrated in BER-compromised mice (MPG-null) that N-

methyl lesions can persist unrepaired in the DNA [161] and these lesions can give rise to 

accelerated colon cancer upon treatment with AOM [155]. 

 Given that loss of MGMT expression results in point mutations, commonly occurring in 

Kras, and that constitutive activation of Ras is a potent driver in cancer cell growth and 

proliferation, it is important to investigate the downstream effects of this activation.  As 

mentioned, over 30% of cancers have mutant Kras and has recently been shown that these 

cancers have upregulated expression of DHFR and TS, thereby using the folate pathway and 

one-carbon metabolism for accelerated DNA synthesis and proliferation.  Taking recent evidence 

that folate supplementation may promote carcinogenesis in conditions of initiated 

transformation, it is imperative to investigate this mechanism and determine the level of 

supplementation which results in an adverse effect.  The data presented here and from our lab are 

using folate concentrations of 2mg/kg which is not a level translating to over-supplementation in 

human subjects.  In order to see the effect at levels more closely matching that of the currently 

folate-supplemented US population, the dose would require 8mg/kg translating to 6-fold of RDA 

commonly seen in the population [53].  It is also concerning in terms of the routine practice of 

oncologists prescribing folic acid supplements in conjunction with chemotherapy.   

 The role of folate in synthesis of DNA precursors is also implicated in growth factor 

signaling through the Akt-mTOR pathway.  mTOR is a serine/threonine protein kinase that 

regulates cellular anabolic and catabolic processes by sensing nutrient, energy and oxygen 
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availability [162].  mTOR is present as two distinct complexes called mTOR complex 1 

(mTORC1) and mTOR complex 2 (mTOR2) [163].  mTORC1 regulates cell growth and protein 

synthesis as well as autophagy for utilization of breakdown products.  The activity of all 

translational as well as specifically targeted translation of mRNAs involved in cell growth and 

proliferation is regulated by mTORC1 and requires high levels of ATP for completion of protein 

synthesis [162].  As a sensor of nutrient and growth factor levels, mTORC1 also regulates 

autophagy, the cellular breakdown of proteins and organelles for availability during periods of 

starvation or limited growth factors [164]. 

Activation of mTORC1 signaling includes influx of growth factors and amino acids, 

glucose, oxygen and constitutive signaling from upstream growth factor kinases.   Inhibition of 

mTORC1 signaling occurs in response to nutrient deprivation, depletion of cellular ATP and 

DNA damage and can trigger autophagy and altered nucleotide metabolism mechanisms [165].  

Decreased ATP levels and subsequent increase in AMP/ATP ratios activates AMPK which then 

suppresses mTORC1kinase activity through phosphorylation of Raptor (regulatory associated 

protein of mTOR) [166]. 

 Pemetrexed is an anti-folate drug used in the treatment of epithelial cancers that inhibits 

thymidylate synthase (TS) and also purine synthesis through the enzyme AICART [167, 168].  

Upon treatment with pemetrexed, AICART is inhibited resulting in accumulation of an AMP-

like intermediate in purine synthesis, ZMP.  This in turn triggers activation of AMPK which 

senses ATP levels for proliferation and cell growth and inhibit mTORC1when energy levels are 

not sufficient.  It has been shown that in addition to inhibiting TS, pemetrexed inhibits purine 

synthesis, activating AMPK and thus suppressing mTOR signaling [169].   
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 Since folate deficiency also inhibits the de novo synthesis of purines our lab did a 

preliminary investigation of mTOR signaling in response to folate deficiency and DMH 

treatment.  As shown in Figure 30, both mTOR and Raptor protein levels are reduced in response 

to FD (Fig 30A, B).  However, when treated with DMH, a DNA damaging agent, mTOR and 

Raptor protein expression is induced in FD animals (Fig 30C, D) and in β-pol
+/-

 animals the 

expression of these proteins is further increased (data not shown).  These expression analysis 

were done using total mTOR and Raptor antibodies, as such the phosphorylation of these 

proteins should be studied to elucidate the activation/inhibition cascade as well as look at targets 

downstream such as those involved in initiation of protein synthesis.   

 PARP1 activation requires cellular ATP and it has been demonstrated that activation of 

PARP1 in response to DNA damage results in cell death due to depletion of ATP [170].  Our 

labs microarray data from the long-term DMH treated animals showed upregulation of PARP1 

mRNA expression in the FD β-pol
+/-

 animals, consistent with the finding of increased apoptosis 

in these animals.  However in the acute-treated animals PARP-1 expression is down-regulated in 

response to DMH in the FD wild-type animals, and even further reduced in the FD knockouts.  

The mechanism of energy depletion, AMPK activation and modulation of mTOR signaling 

under the condition of folate deficiency requires further investigation.   Additional studies will 

provide an opportunity to discover molecular regulators in the mTOR pathway and how this is 

implicated in response to DNA damage and oncogenic transformation.    
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Figure 30  The level of mTOR and Raptor protein in liver nuclear extract from wild type mice on 

folate adequate or folate deficient diets with long-term DMH treatment.  Protein expression was 

determined by Western blot analysis.  A, mTOR wild-type untreated.  B, Raptor wild-type 

untreated.  C, mTOR wild-type FA untreated vs. FD DMH treated. D,  Raptor wild-type FA 

untreated vs. FD DMH treated. The level of mTOR and Raptor protein was normalized based on 

the amount of protein loaded on each gel.  The I.D.V. (integrated density value) corresponding to 

the level of protein was quantified by the BioRad Molecular Imager® System. 
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Figure 30   
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PATHWAY: ANALYSIS OF ENZYME COORDINATION IN RESPONSE TO DNA 

DAMAGE AND IMBALANCED REPAIR 

by 

AMANDA B. PILLING 

August 2011 

Advisor: Dr. Ahmad R. Heydari 

Major: Nutrition and Food Science 

Degree: Doctor of Philosophy 

 The condition of folate deficiency has been implicated in carcinogenesis, with the strongest 

evidence formulated in colon cancer.  The role of folate in DNA repair, DNA synthesis and methylation 

reactions renders this nutrient an valuable target for studying the onset and progression of cancer.  Using 

molecular techniques to determine gene and protein expression, enzyme activity and methylation status 

elucidates the mechanism of DNA repair and damage in folic acid deficient animals in response to 

carcinogen.  The findings presented in this study indicate failure to remove and repair damage in the 

condition of folate deficiency and suggest that the accumulation of DNA base lesions and damage can 

result in clonogenic selection of initiated cells, driving carcinogenesis.  
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